Advertisement

Refining Process Models through the Analysis of Informal Work Practice

  • Simon Brander
  • Knut Hinkelmann
  • Bo Hu
  • Andreas Martin
  • Uwe V. Riss
  • Barbara Thönssen
  • Hans Friedrich Witschel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6896)

Abstract

The work presented in this paper explores the potential of leveraging the traces of informal work and collaboration in order to improve business processes over time. As process executions often differ from the original design due to individual preferences, skills or competencies and exceptions, we propose methods to analyse personal preferences of work, such as email communication and personal task execution in a task management application. Outcome of these methods is the detection of internal substructures (subtasks or branches) of activities on the one hand and the recommendation of resources to be used in activities on the other hand, leading to the improvement of business process models. Our first results show that even though human intervention is still required to operationalise these insights it is indeed possible to derive interesting and new insights about business processes from traces of informal work and infer suggestions for process model changes.

Keywords

Business Process Business Process Model Process Instance Informal Work Task Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abecker, A., Bernardi, A., Hinkelmann, K., Kühn, O., Sintek, M.: Toward a technology for organizational memories. IEEE Intelligent Systems 13(3), 40–48 (1998)CrossRefGoogle Scholar
  2. 2.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Alonso, G., Saltor, F., Ramos, I. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Ayache, S., Quénot, G., Gensel, J.: Classifier fusion for SVM-based multimedia semantic indexing. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 494–504. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Biemann, C., Quasthoff, U., Heyer, G., Holz, F.: ASV Toolbox – A Modular Collection of Language Exploration Tools. In: 6th Language Resources and Evaluation Conference, LREC (2008)Google Scholar
  5. 5.
    Brander, S., Hinkelmann, K., Martin, A., Thönssen, B.: Mining of agile business processes. In: Proceedings of the AAAI Spring Symposium on AI for Business Agility (2011)Google Scholar
  6. 6.
    Carvalho, V.R., Cohen, W.W.: Recommending Recipients in the Enron Email Corpus. Technical Report CMU-LTI-07-005, Carnegie Mellon University, Language Technologies Institute (2007)Google Scholar
  7. 7.
    Di Ciccio, C., Macella, M., Scannapieco, M., Zardetto, D., Cartacci, T.: Groupware Mail Messages Analysis for Mining Collaborative Processes. Technical report, Sapienza, Università di Roma (2011)Google Scholar
  8. 8.
    Cook, J.E., Wolf, A.L.: Discovering models of software processes from event-based data. ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (1998)CrossRefGoogle Scholar
  9. 9.
    Dustdar, S., Hoffmann, T., van der Aalst, W.M.P.: Mining of ad-hoc business processes with TeamLog. Data and Knowlegde Engineering 55(2), 129–158 (2005)CrossRefGoogle Scholar
  10. 10.
    Feldkamp, D., Hinkelmann, K., Thönssen, B.: KISS: Knowledge-Intensive Service Support: An Approach for Agile Process Management, pp. 25–38 (2007)Google Scholar
  11. 11.
    International Organization for Standardization. ISO Survey 2009, http://www.iso.org/iso/survey2009.pdf (accessed in March 2011)
  12. 12.
    Hinkelmann, K., Merelli, E., Thönssen, B.: The role of content and context in enterprise repositories. In: Proceedings of the 2nd International Workshop on Advanced Enterprise Architecture and Repositories-AER (2010)Google Scholar
  13. 13.
    Martin, A., Brun, R.: Agile Process Execution with KISSmir. In: 5th International Workshop on Semantic Business Process Management (2010)Google Scholar
  14. 14.
    McDauley, D.: In the face of increasing global competition and rapid changes in technology, legislation, and knowledge, organizations need to overcome inertia and become agile enough to respond quickly. Organizational agility might indeed be one. In: Swenson, K.D. (ed.) Mastering the Unpredictable: How Adaptive Case Management Will Revolutionize the Way That Knowledge Workers Get Things Done, pp. 257–275. Meghan-Kiffer Press (2010)Google Scholar
  15. 15.
    Nikolov, A., van der Aalst, W.M.P.: EMailAnalyzer: An E-Mail Mining Plug-in for the ProM Framework (2007)Google Scholar
  16. 16.
    Wil, M., van der Aalst, P.: Exploring the CSCW spectrum using process mining. Advanced Engineering Informatics 21(2), 191–199 (2007)CrossRefGoogle Scholar
  17. 17.
    Wil, M., van der Aalst, P., Weijters, A.J.M.M.: Process mining: A research agenda. Comput. Ind. 53(3), 231–244 (2004)CrossRefGoogle Scholar
  18. 18.
    Witschel, H.F., Hu, B., Riss, U.V., Thönssen, B., Brun, R., Martin, A., Hinkelmann, K.: A Collaborative Approach to Maturing Process-Related Knowledge. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 343–358. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Simon Brander
    • 2
  • Knut Hinkelmann
    • 2
  • Bo Hu
    • 1
  • Andreas Martin
    • 2
  • Uwe V. Riss
    • 1
  • Barbara Thönssen
    • 2
  • Hans Friedrich Witschel
    • 2
  1. 1.SAP AGWalldorfGermany
  2. 2.University of Applied Sciences Northwestern Switzerland (FHNW)OltenSwitzerland

Personalised recommendations