Skip to main content

Low-Molecular-Weight Heparins: Differential Characterization/Physical Characterization

  • Chapter
  • First Online:
Heparin - A Century of Progress

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 207))

Abstract

Low-molecular-weight heparins (LMWHs), derived from unfractionated heparin (UFH) through different depolymerization processes, have advantages with respect to the parent heparin in terms of pharmacokinetics, convenience of administration, and reduced side effects. Each LMWH can be considered as an independent drug with its own activity profile, placing significance on their biophysical characterization, which will also enable a better understanding of their structure–function relationship. Several chemical and physical methods, some involving sample modification, are now available and are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

1 6-an.M 2:

Amino-1, 6-anhydro-2-deoxy-β-d-mannopyranose

1,6-an.A 2:

Amino-1,6-anhydro-2-deoxy-β-d-glucopyranose

A* :

2-deoxy-3-O-sulfo-2-sulfoamino-d-glucopyranose

A6S :

2-deoxy-6-O-sulfo-2-sulfoamino/acetylamino-d-glucopyranose

AM.ol:

2,5-anhydromannitol

ANAc :

2-deoxy-2-acetylamino-d-glucopyranose

ANS :

2-deoxy-2-sulfoamino-d-glucopyranose

Epox:

Epoxide

G:

d-glucuronic acid

G2S :

2-O-sulfo glucuronic acid

Gal:

d-galactose

GalA:

Galacturonic acid

I2S :

2-O-sulfo-l-iduronic acid

MNS :

2-deoxy-2-sulfamino-d-mannopyranose

α-red terminal:

Reducing residue with α configuration

ΔU:

4-deoxy-α-l-threo-hex-4-enopyranosil uronic acid

ΔU2S :

2-O-sulfo-4-deoxy-α-l-threo-hex-4-enopyranosil uronic acid

References

  • Barnett WE (1982) Anticoagulant substances. US Patent #4351938

    Google Scholar 

  • Bertini S, Bisio A, Torri G et al (2005) Molecular weight determination of heparin and dermatan sulfate by size exclusion chromatography with a triple detector array. Biomacromolecules 6:168–173

    Article  PubMed  Google Scholar 

  • Bianchini P, Liverani L, Spelta F et al (2007) Variability of heparins and heterogeneity of low molecular weight heparins. Semin Thromb Hemost 33:496–502

    Article  PubMed  CAS  Google Scholar 

  • Bienkowski MJ, Conrad HE (1985) Structure and characterization of the oligosaccharides formed with depolymerization of nitrous acid. J Biol Chem 260:356–365

    PubMed  CAS  Google Scholar 

  • Bisio A, Guglieri S, Frigerio M et al (2004) Controlled Îł-ray irradiation of heparin generates oligosaccharides enriched in highly sulfated sequences. Carbohydr Polymer 455:101–112

    Article  Google Scholar 

  • Bisio A, Vecchietti D, Citterio L et al (2009) Structural features of low-molecular-weight heparins affecting their affinity to antithrombin. Thromb Haemost 102:865–873

    PubMed  CAS  Google Scholar 

  • Briza T, Kejik Z, Cisarova I et al (2008) Optical sensing of sulfate by polymethinium salt receptors: colorimetric sensor for heparin. Chem Commun 16:1901–1903

    Article  Google Scholar 

  • Capila I, Gunay NS, Shriver Z et al (2005) Methods for structural analysis of heparin and heparan sulfate. In: Garg HG, Linhardt RJ, Hales CA (eds) Chemistry and biology of heparin and heparan sulfate. Elsevier Ltd, Oxford

    Google Scholar 

  • Casu B, Torri G (1999) Structural characterization of low molecular weight heparin. Semin Thromb Hemost 25(3):17–25

    PubMed  CAS  Google Scholar 

  • Casu B, Guerrini M, Naggi A et al (1996) Characterization of sulfation patterns of beef and pig mucosal heparins by nuclear magnetic resonance spectroscopy. Arzneimittelforschung 46:472–477

    PubMed  CAS  Google Scholar 

  • Casu B, Guerrini M, Torri G (2004) Structural and conformational aspects of the anticoagulant and antithrombotic activity of heparin and dermatan sulfate. Curr Pharm Des 10:939–949

    Article  PubMed  CAS  Google Scholar 

  • Chuang WL, McAllister H, Rabenstein L (2001) Chromatographic methods for product-profile analysis and isolation of oligosaccharides produced by heparinase-catalyzed depolymerization of heparin. J Chromatogr A 932:65–74

    Article  PubMed  CAS  Google Scholar 

  • Cornelli U, Fareed J (1999) Human pharmacokinetics of low molecular weight heparins. Semin Thromb Hemost 25(3):57–61

    PubMed  CAS  Google Scholar 

  • De Ambrosi L, Recchia W, Ferrari G (1991) Process for the controlled preparation of low molecular weight glycosaminoglycans. US Patent #4987222

    Google Scholar 

  • Desai UR, Linhardt RJ (1995) Molecular weight of heparin using 13C nuclear magnetic resonance spectroscopy. J Pharm Sci 84:212–215

    Article  PubMed  CAS  Google Scholar 

  • Desai UR, Wang H-M, Ampofo SA et al (1993) Oligosaccharide composition of heparin and low-molecular-weight heparins by capillary electrophoresis. Anal Biochem 213:120–127

    Article  PubMed  CAS  Google Scholar 

  • Edens RE, al-Hakim A, Weiler JM et al (1992) Gradient polyacrylamide gel electrophoresis for determination of molecular weight of heparin preparations and low-molecular-weight heparin derivatives. J Pharm Sci 81:823–827

    Article  PubMed  CAS  Google Scholar 

  • Fareed J, Walenga JM, Hoppensteadt D et al (1988) Comparative study on the in vitro and in vivo activities of seven low-molecular-weight heparins. Haemostasis 18:3–15

    PubMed  CAS  Google Scholar 

  • Fareed J, Ma Q, Florian M et al (2004) Differentiation of low molecular-weight heparins: impact on the future of the management of thrombosis. Semin Thromb Hemost 30(suppl 1):89–104

    PubMed  Google Scholar 

  • Ferro DR, Provasoli A, Ragazzi M et al (1986) Evidence for conformational equilibrium of the sulphated L-Iduronate residue in heparin and in synthetic heparin mono- and oligosaccharides: NMR and force-field studies. J Am Chem Soc 108:6773–6778

    Article  CAS  Google Scholar 

  • Ferro DR, Provasoli A, Ragazzi M et al (1990) Conformer populations of L-iduronic acid residues in glycosaminoglycan sequences. Carbohydr Res 195:157–167

    Article  PubMed  CAS  Google Scholar 

  • Fussi F (1980) Process for obtaining low molecular weight heparins endowed with elevated pharmacological properties, and product so obtained. US Patent #4281108

    Google Scholar 

  • Fussi F (1982) Process for obtaining low molecular weight heparins. European Patent GB2, 002, 406B

    Google Scholar 

  • Gray E, Mulloy B, Barrowcliffe TW (2008) Heparin and low-molecular-weight heparin. Thromb Haemost 99:807–818

    PubMed  CAS  Google Scholar 

  • Guerrini M, Bisio A, Torri G (2001) Combined quantitative 1H and 13C-NMR spectroscopy for characterization of heparin preparations. Semin Thromb Hemost 27:473–482

    Article  PubMed  CAS  Google Scholar 

  • Guerrini M, Raman R, Venkataraman G et al (2002) A novel computational approach to integrate NMR spectroscopy and capillary electrophoresis for structure assignment of heparin oligosaccharides. Glycobiology 12:713–719

    Article  PubMed  CAS  Google Scholar 

  • Guerrini M, Naggi A, Guglieri S et al (2005) Complex glycosaminoglycans: profiling substitution patterns by two-dimensional nuclear magnetic resonance spectroscopy. Anal Biochem 337:35–47

    Article  PubMed  CAS  Google Scholar 

  • Guerrini M, Guglieri S, Beccati D et al (2006) Conformational transitions induced in heparin octasaccharides by binding with antithrombin III. Biochem J 399:191–198

    Article  PubMed  CAS  Google Scholar 

  • Guerrini M, Guglieri S, Naggi A et al (2007) Low molecular weight heparins: structural differentiation by bidimensional nuclear magnetic resonance spectroscopy. Semin Thromb Hemost 33:478–487

    Article  PubMed  CAS  Google Scholar 

  • Guerrini M, Guglieri S, Casu B et al (2008) Antithrombin-binding octasaccharides and role of extensions of the active pentasaccharide sequence in the specificity and strength of interaction. J Biol Chem 283:26662–26675

    Article  PubMed  CAS  Google Scholar 

  • Guerrini M, Zhang Z, Shriver Z et al (2009) Orthogonal analytical approaches to detect potential contaminants in heparin. Proc Natl Acad Sci USA 106:16956–16961

    Article  PubMed  CAS  Google Scholar 

  • Guo X, Condra M, Kimura K et al (2003) Determination of molecular weight of heparin by size exclusion chromatography with universal calibration. Anal Biochem 312:33–39

    Article  PubMed  CAS  Google Scholar 

  • Henriksen J, Ringborg LH, Roepstorrf P (2004) On-line size-exclusion chromatography/mass spectrometry of low molecular mass heparin. J Mass Spectrom 39:1305–1312

    Article  PubMed  CAS  Google Scholar 

  • Hirsh H, Warkentin TE, Shaughnessy SG et al (2001) Heparin and low-molecular-weight heparin mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. Chest 119:64S–94S

    Article  PubMed  CAS  Google Scholar 

  • Hirsh J, Raschke R (2004) Heparin and Low-Molecular-Weight Heparin. Chest 126:188S–203S

    CAS  Google Scholar 

  • Hricovini M, Torri G (1995) Dynamics in aqueous solutions of the pentasaccharide corresponding to the binding site of heparin for antithrombin III studied by NMR relaxation measurements. Carbohydr Res 268:159–175

    Article  PubMed  CAS  Google Scholar 

  • Hricovini M, Guerrini M, Torri G et al (1995) Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Carbohydr Res 277:11–23

    Article  PubMed  CAS  Google Scholar 

  • Hricovini M, Guerrini M, Bisio A et al (2001) Conformation of heparin pentasaccharide bound to antithrombin III. Biochem J 359:265–272

    Article  PubMed  CAS  Google Scholar 

  • Huckerby TN, Sanderson PN, Nieduszynski A (1985) NMR Studies of the disulphated disaccharide obtained by degradation of bovine lung heparin with nitrous acid. Carbohydr Res 138:199–206

    Article  PubMed  CAS  Google Scholar 

  • Iacomini M, Casu B, Guerrini M et al (1999) Linkage region sequences of heparins and heparan sulfates.Detection and quantification by NMR spectroscopy. Anal Biochem 274:50–58

    Article  PubMed  CAS  Google Scholar 

  • Jaseja M, Rej RN, Sauriol F (1989) Novel region and stereoselective modifications of heparin in alkaline solution. Nuclear magnetic resonance spectroscopic evidence. Can J Chem 67:1449–1456

    Article  CAS  Google Scholar 

  • Jin L, Abrahams JP, Skinner R et al (1997) The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci USA 94:14683–14688

    Article  PubMed  CAS  Google Scholar 

  • Johnson DJ, Li W, Adams TE et al (2006) Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation. EMBO J 25:2029–2037

    Article  PubMed  CAS  Google Scholar 

  • Juhasz P, Biemann K (1995) Utility of non-covalent complexes in the matrix assisted laser desorption ionization mass spectrometry of heparin-derived oligosaccharides. Carbohydr Res 270:131–147

    Article  PubMed  CAS  Google Scholar 

  • King JT, Desai UR (2008) A capillary electrophoretic method for fingerprinting low molecular weight heparins. Anal Biochem 380:229–234

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa H, Kinoshita A, Sugahara K et al (2002) Microanalysis of glycosaminoglycan-derived disaccharides labelled with the fluorophore 2-aminoacridone by capillary electrophoresis and high-performance liquid chromatography. Anal Biochem 232:114–121

    Article  Google Scholar 

  • Knobloch JE, Shaklee PN (1997) Absolute molecular weight distribution of low molecular weight heparins by size-exclusion chromatography with multiangle laser light scattering detection. Anal Biochem 245:231–241

    Article  PubMed  CAS  Google Scholar 

  • Komatsu H, Yoshii K, Ishimitsu S et al (1993) Molecular mass determination of low molecular mass heparins. Application of wide collection angle measurements of light scattering using a high-performance gel permeation chromatography system equipped with a low angle laser light-scattering photometer. J Chromatogr 644:17–24

    Article  PubMed  CAS  Google Scholar 

  • Korir A, Larive CK (2009) Advances in the separation, sensitive detection, and characterization of heparin and heparan sulfate. Anal Bioanal Chem 393:155–169

    Article  PubMed  CAS  Google Scholar 

  • Kusche M, Torri G, Casu B et al (1990) Biosynthesis of heparin. Availability of 3-O-sulfation sites. J Biol Chem 265:7292–7300

    PubMed  CAS  Google Scholar 

  • Lamari FN, Militsopoulou M, Mitropoulou TN et al (2002) Analysis of glycosaminoglycan-derived disaccharides in biologic samples by capillary electrophoresis and protocol for sequencing glycosaminoglycans. Biomed Chromatogr 16:95–102

    Article  PubMed  CAS  Google Scholar 

  • Lane DA, Denton J, Flynn AM et al (1984) Anticoagulant activities of heparin oligosaccharides and their neutralization by platelet factor 4. Biochem J 218:725–732

    PubMed  CAS  Google Scholar 

  • Langer RS, Linhardt RJ, Cooney LC et al (1983) Heparinase derived anticoagulants. US Patent #4396762

    Google Scholar 

  • Li W, Johnson DJ, Esmon CT et al (2004) Structure of the antithrombin–thrombin–heparin ternary complex reveals the antithrombotic mechanism of heparin. Nat Struct Mol Biol 11:857–862

    Article  PubMed  CAS  Google Scholar 

  • Linhardt RJ, Gunay NS (1999) Production and chemical properties of low molecular weight heparins. Semin Thromb Hemost 25(3):5–16

    PubMed  CAS  Google Scholar 

  • Linhardt RJ, Loganathan D, Al-Hakim A et al (1990) Oligosaccharide mapping of low molecular weight heparins: structure and activity differences. J Med Chem 33:1639–1645

    Article  PubMed  CAS  Google Scholar 

  • Loganathan D, Wang HM, Mallis LM et al (1990) Structural variation in the antithrombin III binding site region and its occurrence in heparin from different sources. Biochemistry 29:4362–4368

    Article  PubMed  CAS  Google Scholar 

  • Lopez LL (1991) Depolymerization method of heparin. US Patent #4981955

    Google Scholar 

  • Lormeau JC, Petitou M, Choay J (1991) Method for obtaining biologically active mucopolysaccharides of high purity, by controlled depolymerization of heparin. US Patent #5019649

    Google Scholar 

  • LĂĽhn S, Schrader T, Sun W, Alban S (2010) Development and evaluation of a fluorescence microplate assay for quantification of heparins and other sulfated carbohydrates. J Pharm Biomed Anal 52:1–8

    Article  PubMed  Google Scholar 

  • Ma SC, Yang VC, Meyerhoff ME (1992) Heparin-responsive electrochemical sensor: a preliminary study. Anal Chem 64:694–697

    Article  PubMed  CAS  Google Scholar 

  • Malsch R, Harenberg J, Piazolo L et al (1996) Chromatographic and electrophoretic application for the analysis of heparin and dermatan sulfate. J Chromatogr B 685:223–231

    Article  CAS  Google Scholar 

  • Mao W, Thanawiroon C, Linhardt RJ (2002) Capillary electrophoresis for the analysis of glycosaminoglycans and glycosaminoglycan-derived oligosaccharides. Biomed Chromatogr 16:77–94

    Article  PubMed  CAS  Google Scholar 

  • Mascellani G, Guerrini M, Torri G et al (2007) Characterization of di- and monosulfated, unsaturated heparin disaccharides with terminal N-sulfated 1,6-anhydrohydro-β-D-glucosamine or N-sulfated 1,6-an β-D-mannosamine residues. Carbohydr Res 342:835–842

    Article  PubMed  CAS  Google Scholar 

  • Militsopoulou M, Lamari FN, Hjerpe A et al (2002) Determination of twelve heparin- and heparan sulfate-derived disaccharides as 2-aminoacridone derivatives by capillary zone electrophoresis using ultraviolet and laser-induced fluorescence detection. Electrophoresis 23:1104–1109

    Article  PubMed  CAS  Google Scholar 

  • Militsopoulou M, Lecomte C, Bayle C et al (2003) Laser-induced fluorescence as a powerful detection tool for capillary electrophoretic analysis of heparin/heparan sulfate disaccharides. Biomed Chromatogr 17:39–41

    Article  PubMed  CAS  Google Scholar 

  • Mourier PAJ, Viskov C (2004) Chromatographic analysis and sequencing approach of heparin oligosaccharides using cetyltrimethylammonium dynamically coated stationary phases. Anal Biochem 332:299–313

    Article  PubMed  CAS  Google Scholar 

  • Mourier P, Viskov C (2005) Method for determining specific group constituting heparins or low molecular weight heparin. US Patent 2005/0119477 A1; Chem Abstr 142:89363

    Google Scholar 

  • Mourier P, Viskov C (2005) Process for oxidizing unfractionated heparins and detecting presence of glycoserine in heparin and heparin products. European patent WO/2005/090411

    Google Scholar 

  • Mousa SA (2005) Heparin and low molecular weight heparin in thrombosis and inflammation: emerging link. In: Garg HG, Linhardt RJ, Hales CA (eds) Chemistry and biology of heparin and heparan sulfate. Elsevier Ltd, Oxford

    Google Scholar 

  • Műller-Graff PK, Szelke H, Kay S, Kramer R (2010) Pattern-based sensing of sulfated glycosaminoglycans with a dynamic mixture of iron complexes. Org Biomol Chem 8:2327–2331

    Article  PubMed  Google Scholar 

  • Mulloy B, Forster MJ (2000) Conformation and dynamics of heparin and heparan sulfate. Glycobiology 10:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Mulloy B, Johnson EA (1987) Assignment of the 1H NMR spectra of heparin and heparan sulfate. Carbohydr Res 170:151–165

    Article  PubMed  CAS  Google Scholar 

  • Mulloy B, Linhardt RJ (2001) Order out of complexity-protein structures that interact with heparin. Curr Opin Struct Biol 11:623–628

    Article  PubMed  CAS  Google Scholar 

  • Mulloy B, Gee C, Wheeler SF et al (1997) Molecular weight measurement of low molecular weight heparins by gel permeation chromatography. Thromb Haemost 77:668–674

    PubMed  CAS  Google Scholar 

  • Nader HB, Walenga JM, Berkowitz SD et al (1999) Preclinical differentiation of low molecular weight heparins. Semin Thromb Hemost 25(suppl 3):63–72

    PubMed  Google Scholar 

  • Patel RP, Narcowicz C, Hutchinson JP et al (2008) A simple capillary electrophoresis method for the rapid separation and determination of intact low molecular weight and unfractionated heparins. J Pharm Biomed Anal 46:30–35

    Article  PubMed  CAS  Google Scholar 

  • Perlin AS, Mazurek M, Jaques LB et al (1968) Proton magnetic resonance spectral study of heparin: L-iduronic acid residues in commercial heparin. Carbohydr Res 7:369–379

    Article  CAS  Google Scholar 

  • Perlin AS, Casu B, Sanderson GR et al (1970) 220 MHz spectra of heparin, chondroitins, and other mucopolysaccharides. Can J Chem 220(14):2260–2268

    Article  Google Scholar 

  • Pervin A, al-Hakim A, Linhardt RJ (1994) Separation of glycosaminoglycan-derived oligosaccharides by capillary electrophoresis by using reverse polarity. Anal Biochem 221:182–188

    Article  PubMed  CAS  Google Scholar 

  • Petitou M, van Boeckel CAA (2004) A synthetic Antithrombin III binding pentasaccharide is now a drug! What comes next? Angew Chem Int Ed Engl 43:3118–3133

    Article  PubMed  CAS  Google Scholar 

  • Petitou M, Barzu T, Herault J et al (1997) A unique trisaccharide sequence in heparin mediates the early step of antithrombin III activation. Glycobiology 7:323–327

    Article  PubMed  CAS  Google Scholar 

  • Planes A, Vochelle N, Ferru J et al (1986) Enoxaparin, low molecular weight heparin: its use in the prevention of deep vein thrombosis following total hip replacement. Haemostasis 16:152–158

    PubMed  CAS  Google Scholar 

  • Raman R, Venkataraman G, Ernst S et al (2003) Structural specificity of heparin binding in the fibroblast growth factor family of proteins. Proc Natl Acad Sci USA 100:2357–2362

    Article  PubMed  CAS  Google Scholar 

  • Ramasamy I, Kennedy J, Tan K (2003) Capillary electrophoresis for characterization of low molecular weight heparins. Lab Hematol 9:64–66

    PubMed  CAS  Google Scholar 

  • Rej RN, Perlin AS (1990) Base-catalyzed conversion of the α-Liduronic acid 2-sulfate unit of heparin into a unit of α-Lgalacturonic acid, and related reactions. Carbohydr Res 200:437–447

    Article  CAS  Google Scholar 

  • Rice KG, Rottink MK, Linhardt RJ (1987) Fractionation of heparin-derived oligosaccharides by gradient polyacrylamide-gel electrophoresis. Biochem J 244:515–522

    PubMed  CAS  Google Scholar 

  • Shriver Z, Raman R, Venkataraman G et al (2000a) Sequencing of 3-O-sulphate containing heparin decasaccharides with a partial antithrombin III binding site. Proc Natl Acad Sci USA 97:10359–10364

    Article  PubMed  CAS  Google Scholar 

  • Shriver Z, Sundaram M, Venkataraman G et al (2000b) Cleavage of the antithrombin III binding site in heparin by heparinases and its implication in the generation of low molecular weight heparin. Proc Natl Acad Sci USA 97:10365–10370

    Article  PubMed  CAS  Google Scholar 

  • Shriver Z, Sundaram M, Venkataraman G et al (2007) Low Molecular weight heparin composition and uses thereof. US Patent #2007/0287683

    Google Scholar 

  • Sugahara K, Tsuda H, Yoshida K et al (1995) Structure determination of the octa- and decasaccharide sequences isolated from the carbohydrate-protein linkage region of porcine intestinal heparin. J Biol Chem 270:22914–22923

    Article  PubMed  CAS  Google Scholar 

  • Sundaram M, Qi Y, Shriver Z et al (2003) Rational design of low-molecular weight heparins with improved in vivo activity. Proc Natl Acad Sci USA 100:651–656

    Article  PubMed  CAS  Google Scholar 

  • Thanawiroon C, Linhardt RJ (2003) Separation of a complex mixture of heparin-derived oligosaccharides using reverse-phase high-performance liquid chromatography. J Chromatogr A 1014:215–223

    Article  PubMed  CAS  Google Scholar 

  • Toida T, Linhardt RJ (1996) Detection of glycosaminoglycans as a copper (II) complex in capillary electrophoresis. Electrophoresis 17:341–346

    Article  PubMed  CAS  Google Scholar 

  • Torri G, Guerrini M (2008) Quantitative 2D NMR analysis of glycosaminoglycans. In: Holzgrabe U, Wawer I, Diehl B (eds) NMR Spectroscopy in pharmaceutical analysis. Integra, India

    Google Scholar 

  • Turnbull JE (2001) Analytical and preparative strong anion-exchange HPLC of heparan sulfate and heparin saccharides. Methods Mol Biol 171:141–147

    PubMed  CAS  Google Scholar 

  • Uzan A (1998) Sulfated polysaccharides obtained from heparin, preparation process, pharmaceutical composition and use thereof. US Patent #5849721

    Google Scholar 

  • van Boeckel CAA, Grootenhuis PDJ, Visser A (1994) A mechanism for heparin-induced potentiation of antithrombin III. Nat Struct Biol 1:423–425

    Article  PubMed  Google Scholar 

  • Venkataraman G, Shriver Z, Raman R et al (1999) Sequencing complex polysaccharides. Science 286:537–542

    Article  PubMed  CAS  Google Scholar 

  • Viskov C, Just M, Laux V et al (2009) Description of the chemical and pharmacological characteristics of a new hemisynthetic ultra-low-molecular-weight heparin, AVE5026. J Thromb Haemost 7(7):1143–1151

    Article  PubMed  CAS  Google Scholar 

  • Vismara E, Pierini M, Guglieri S et al (2007) Structural modification induced in heparin by a fenton-type depolymerization process. Semin Thromb Hemost 33:466–477

    Article  PubMed  CAS  Google Scholar 

  • Vismara E, Pierini M, Mascellani G et al (2010) Low molecular weight heparin from Cu2+ and Fe2+ Fenton’s type depolymerisation processes. Thromb Haemost 103(3):613–622

    Article  PubMed  CAS  Google Scholar 

  • Vivès RR, Goodger S, Pye DA (2001) Combined strong-anion exchange HPLC and PAGE approach for the purification of heparan sulfate oligosaccharides. Biochem J 354:141–147

    Article  PubMed  Google Scholar 

  • Volpi N, Mascellani G, Bianchini P (1992) Low molecular weight heparins (5 kDa) and oligoheparins (2 kDa) produced by gel permeation enrichment or radical process: comparison of structures and physiochemical and biological properties. Anal Biochem 200:100–107

    Article  PubMed  CAS  Google Scholar 

  • Volpi N, Maccari F, Linhardt RJ (2008) Capillary electrophoresis of complex natural polysaccharides. Electrophoresis 29:3095–3106

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Murakami T, Tsuda H et al (1995) Isolation of the porcine heparin tetrasaccharides with glucuronate 2-O-sulfate. J Biol Chem 270:8696–8705

    Article  PubMed  CAS  Google Scholar 

  • Yates EA, Santini F, Guerrini M et al (1996) 1H and 13C NMR spectral assignment of the major sequences of twelve systematically modified heparin derivatives. Carbohydr Res 294:15–27

    PubMed  CAS  Google Scholar 

  • Zaia J (2009) On-line separations combined with MS for analysis of glycosaminoglycans. Mass Spectrom Rev 28:254–272

    Article  PubMed  CAS  Google Scholar 

  • Zilberstein G, Shlar I, Korol L et al (2009) Focusing of low-molecular-mass heparins in polycationic polyacrylamide matrices. Anal Chem 81:6966–6971

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof Benito Casu and Dr Giuseppe Cassinelli for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Guerrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guerrini, M., Bisio, A. (2012). Low-Molecular-Weight Heparins: Differential Characterization/Physical Characterization. In: Lever, R., Mulloy, B., Page, C. (eds) Heparin - A Century of Progress. Handbook of Experimental Pharmacology, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23056-1_7

Download citation

Publish with us

Policies and ethics