Skip to main content

Semi-synthetic Heparinoids

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 207))

Abstract

New chemical-enzymatic technology based on the modification of the bacterial polysaccharide K5 from Escherichia coli leads to the synthesis of a number of heparin/heparan sulfate-like molecules with different biological activities. With this technology, two families of sulfated compounds were synthesized, which differ in their uronic acid content. The first group contains only glucuronic acid, whereas the second group contains about 50% iduronic acid following epimerization by immobilized recombinant C5 epimerase. This has led to the development of various anticoagulant and nonanticoagulant K5 derivatives endowed with different – and sometimes highly specific – antitumor, antiviral, and/or anti-inflammatory activities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adamiak B, Ekblad M, Bergström T, Ferro V, Trybala E (2007) Herpes simplex virus type 2 glycoprotein G is targeted by the sulfated oligo- and polysaccharide inhibitors of virus attachment to cells. J Virol 81:13424–13434

    Article  PubMed  CAS  Google Scholar 

  • Angulo J, dePaz J-L, Nieto PM, Martin Lomas M (2000) Interaction of heparin with Ca2+: a model study with a synthetic heparin-like hexasaccharide. Isr J Chem 40:289–299

    Article  CAS  Google Scholar 

  • Arduino PG, Porter SR (2008) Herpes simplex virus type 1 infection: overview on relevant clinico-pathological features. J Oral Pathol Med 37:107–121

    Article  PubMed  Google Scholar 

  • Attanasio M, Gori AM, Giusti B, Pepe C, Comeglio P, Brunelli T, Prisco D, Abbate R, Gensini GF, Neri Serneri GG (1998) Cytokines gene expression in human LPS- and IFNg-stimulated mononuclear cells is inhibited by heparin. Thromb Haemost 79:959–962

    PubMed  CAS  Google Scholar 

  • Ayotte L, Perlin AS (1986) N.M.R. spectroscopic observations related to the function of sulfate groups in heparin. Calcium binding vs. biological activity. Carbohydr Res 145:267–277

    Article  PubMed  CAS  Google Scholar 

  • Barrowcliffe TW (1989) The anticoagulant activity of heparin: measurement and relationship to chemical structure. J Pharm Biomed Anal 7:217–226

    Article  PubMed  CAS  Google Scholar 

  • Basilico C, Moscatelli D (1992) The FGF family of growth factors and oncogenes. Adv Cancer Res 59:115–165

    Article  PubMed  CAS  Google Scholar 

  • Bjõrk I, Lindahl U (1982) Mechanism of the anticoagulant action of heparin. Mol Cell Biochem 48:161–182

    Article  PubMed  Google Scholar 

  • Borgenström M, Jalkanen M, Salmivirta M (2003) Sulfated derivatives of Escherichia coli K5 polysaccharide as modulators of fibroblast growth factor signalling. J Biol Chem 278:49882–49889

    Article  PubMed  Google Scholar 

  • Bosch FX, de Sanjose S (2003) Human papillomavirus and cervical cancer-burden and assessment of causality. J Natl Cancer Inst Monogr 31:3–13

    Article  PubMed  Google Scholar 

  • Campbell P, Hannessonn HH, Sandbäck D, Rodén L, Lindahl U, Li J-P (1994) Biosynthesis of heparin/heparan sulfate. Purification of the d-glucuronyl C-5 epimerase from bovine liver. J Biol Chem 268:26953–26958

    Google Scholar 

  • Caputo A, Boarini BM, Mantovani I, Corallini A, Barbanti-Brodano G (1999) Multiple functions of human immunodeficiency virus type 1 Tat protein in the pathogenesis of AIDS. Virology 1:753–778

    CAS  Google Scholar 

  • Casu B, Grazioli G, Hannessonn HH, Jann B, Jann K, Lindahl U, Naggi A, Oreste P, Razi N, Torri G, Tursi F, Zoppetti G (1994a) Biologically active, heparan sulfate-like species by combined chemical and enzymic modification of the Escherichia coli polysaccharide K5. Carbohydr Lett 1:107–114

    CAS  Google Scholar 

  • Casu B, Grazioli G, Razi N, Guerrini M, Naggi A, Torri G, Oreste P, Tursi F, Zoppetti G, Lindahl U (1994b) Heparin-like compounds prepared by chemical modification of capsular polysaccharide from Escherichia coli K5. Carbohydr Res 263:271–284

    Article  PubMed  CAS  Google Scholar 

  • Cavazzoni V, Manzoni M, Bergomi S (1992) Production and characterization of the Escherichia coli K5 polysaccharide in the extracellular form. Ann Microbiol Enzymol 42:101–110

    CAS  Google Scholar 

  • Cheshenko N, Keller MJ, MasCasullo VG, Jarvis A, Cheng H, John M et al (2004) Candidate topical microbicides bind herpes simplex virus glycoprotein B and prevent viral entry and cell-to-cell spread. Antimicrob Agents Chemother 48:2025–2036

    Article  PubMed  CAS  Google Scholar 

  • Chess EK et al (2011) Case study: contamination of heparin with oversulfated chondroitin sulfate. In: Lever R, Mulloy B, Page CP (eds) Heparin – a century of progress. Springer, Heidelberg

    Google Scholar 

  • Choay J (1989) Structure and activity of heparin and its fragments: an overview. Semin Thromb Hemost 15:359–364

    Article  PubMed  CAS  Google Scholar 

  • Choay J, Lormeau J-C, Petitou M, Sinay P, Casu B, Oreste P, Torri G, Gatti G (1980) Anti-Xa active heparin oligosaccharides. Thromb Res 18:573–578

    Article  PubMed  CAS  Google Scholar 

  • Corey L, Wald A (1999) Genital herpes. In: Holmes KK, Sparling PF, Mardh PA et al (eds) Sexually transmitted diseases. McGraw-Hill, New York, pp 285–312

    Google Scholar 

  • De Clercq E (1989) Potential drugs for treatment of AIDS. J Antimicrob Chemoter 23(Suppl A):35–46

    Google Scholar 

  • Dewhurst S, Gelbard HA, Fine SM (1996) Neuropathogenesis of AIDS. Mol Med Today 2:16–23

    Article  PubMed  CAS  Google Scholar 

  • Dorkin TJ, Robinson MC, Marsh C, Bjartell A, Neal DE, Leung HY (1999) FGF8 over-expression in prostate cancer is associated with decreased patient survival and persists in androgen independent disease. Oncogene 18:2755–2761

    Article  PubMed  CAS  Google Scholar 

  • Engelberg H (1999) Actions of heparin that may affect the malignant process. Cancer 85:257–272

    Article  PubMed  CAS  Google Scholar 

  • Ferro DR, Provasoli A, Ragazzi M, Casu B, Torri G, Bossenec V, Perly B, Sinay P, Petitou M, Choay J (1990) Conformer populations of L-Iduronic acid residues in glycosaminoglycans sequences. Carbohydr Res 195:157–167

    Article  PubMed  CAS  Google Scholar 

  • Freeman EE, Weiss HA, Glynn JR, Cross PL, Withworth JA, Hayes RJ (2006) Herpes symplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 20:73–83

    Article  PubMed  Google Scholar 

  • Gatignol A, Jeang KT (2000) Tat as a transcriptional activator and a potential therapeutic target for HIV-1. In: Jeang KT (ed) Advances in pharmacology, vol 48. Academic Press, San Diego, CA, pp 209–227

    Google Scholar 

  • Giroglou T, Florin L, Shäfer F, Streek RE, Sapp M (2001) Human papillomavirus infection requires cell surface heparan sulphate. J Virol 75:1565–1570

    Article  PubMed  CAS  Google Scholar 

  • Goldstein G (1996) HIV-1 Tat protein as a potential AIDS vaccine. Nat Med 2:960–964

    Article  PubMed  CAS  Google Scholar 

  • Gori AM, Attanasio M, Gazzini A, Rossi L, Lucarini L, Miletti S, Chini J, Manoni M, Abbate R, Genuini GF (2004) Cytokine gene expression and production by human LPS-stimulated mononuclear cells are inhibited by sulfated heparin-like semi-synthetic derivatives. J Thromb Haemost 2:1657–1662

    Article  PubMed  CAS  Google Scholar 

  • Hagner-McWhirter A, Hannessonn HH, Campbell P, Westley J, Rodén L, Lindahl U, Li J-P (2000) Biosynthesis of heparin/heparan sulfate: kinetic studies of the glucuronyl C5-epimerase with N-sulfated derivatives of the Escherichia coli K5 capsular polysaccharide as substrates. Glycobiology 10:159–171

    Article  PubMed  CAS  Google Scholar 

  • Harrop HA, Coombe DR, Rider CC (1994) Heparin specifically inhibits binding of V3 loop antibodies to HIV-1 gp120, an effect potentiated by CD4 binding. AIDS 8:183–192

    Article  PubMed  CAS  Google Scholar 

  • Herold BC, Gerber SI, Belval BJ, Siston AM, Shulman N (1996) Differences in the susceptibility of herpes simplex virus types 1 and 2 to modified heparin compounds suggest serotype differences in viral entry. J Virol 70:3461–3469

    PubMed  CAS  Google Scholar 

  • Ishihara M, Tyrrell DJ, Stauber GB, Brown S, Counses LS, Stack RJ (1993) Preparation of affinity-fractionated, heparin-derived oligosaccharides and their effects on selected biological activities mediated by basic fibroblast growth factor. J Biol Chem 268:4675–4683

    PubMed  CAS  Google Scholar 

  • Jacobsson I, Lindahl U, Jensen JW, Rodén L, Prihar H, Feingold DS (1984) Biosynthesis of heparin – substrate specificity of heparosan N-sulfate d-glucuronosyl 5-epimerase. J Biol Chem 259:1056–1063

    PubMed  CAS  Google Scholar 

  • Jann B, Jann K (1990) Structure and biosynthesis of the capsular antigens of Escherichia coli, vol 150, Current topics in microbiology and immunology. Springer, Heidelberg, pp 19–42

    Google Scholar 

  • Joyce JG, Tung JS, Przysiecki CT, Cook JC, Lehman ED, Sands JA, Jansen KU, Keller PM (1999) HPV: from infection to cancer. J Biol Chem 274:5810–5822

    Article  PubMed  CAS  Google Scholar 

  • Knappe M, Bodevin S, Selinka HC, Spillmann D, Streeck RE, Chen XS (2007) Surface-exposed aminoacids of HPV16L1 protein mediating interaction with cell surface heparan sulphate. J Biol Chem 282:27913–27922

    Article  PubMed  CAS  Google Scholar 

  • Kusche M, Hannesson H, Lindahl U (1991) Biosynthesis of heparin. Use of Escherichia coli K5 capsular polysaccharide as a model substrate in enzymic polymer-modification reactions. Biochem J 275:151–158

    PubMed  CAS  Google Scholar 

  • Leali D, Belleri M, Urbinati C, Coltrini D, Oreste P, Zoppetti G, Ribatti D, Rusnati M, Presta M (2001) Fibroblast growth factor-2 antagonist activity and angiostatic capacity of sulfated Escherichia coli K5 polysaccharide derivatives. J Biol Chem 276:37900–37908

    PubMed  CAS  Google Scholar 

  • Lebeau B, Chastang C, Brechot JM, Capron F, Dautzenberg B, Delaisements D et al (1994) Subcutaneous heparin treatment increases survival in small cell lung cancer. Cancer 74:38–45

    Article  PubMed  CAS  Google Scholar 

  • Lembo D, Donalisio M, Rusnati M, Bugatti A, Cornaglia M, Cappello P, Giovarelli M, Oreste P, Landolfo S (2008) Sulfated K5 Escherichia Coli polysaccharide derivatives as wide-range inhibitors of genital types of human papillomavirus. Antimicrob Agents Chemother 52:1374–1381

    Article  PubMed  CAS  Google Scholar 

  • Li J-P, Hagner-McWhirter Å, Kjellen L, Palgi J, Jalkanen M, Lindahl U (1997) Biosynthesis of heparin/heparan sulfate. cDNA cloning and expression of D-glucuronyl C5 epimerase from bovine lung. J Biol Chem 272:28158–28163

    Article  PubMed  CAS  Google Scholar 

  • Liang JN, Chakrabarti B, Ayotte L, Perlin AS (1982) An essential role for the 2-sulfamino group in the interaction of calcium ion with heparin. Carbohydr Res 106:101–109

    Article  CAS  Google Scholar 

  • Lindahl U, Bäckström G, Thunberg L, Leder IG (1980) Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin. Proc Natl Acad Sci USA 77:6551–6555

    Article  PubMed  CAS  Google Scholar 

  • Lindahl U, Kusche M, Lidholt K, Oscarsson L-G (1989) Biosynthesis of heparin and heparan sulphate. Ann NY Acad Sci 556:36–50

    Article  PubMed  CAS  Google Scholar 

  • Lowry DR, Howley PM (2001) Papillomaviruses. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 2231–2264

    Google Scholar 

  • Maccarana M, Tawada A, Yoshida K, Lindahl U (1996) Domain structure of heparan sulfates from bovine organs. J Biol Chem 271:17804–17810

    Article  PubMed  CAS  Google Scholar 

  • Malmström A, Rodén L, Feingold DS, Jacobsson I, Bäckström G, Lindahl U (1980) Biosynthesis of heparin. Partial purification of the uronosyl C-5 epimerase. J Biol Chem 255:3878–3883

    PubMed  Google Scholar 

  • Manzoni M, Bergomi S, Cavazzoni V (1993) Extracellular K5 polysaccharide of Escherichia coli: production and characterization. J Bioact Compat Polym 8:251–259

    Article  CAS  Google Scholar 

  • Manzoni M, Bergomi S, Cavazzoni V (1996) Production of K5 polysaccharides of different molecular weight by Escherichia coli. J Bioact Compat Polym 11:301–311

    CAS  Google Scholar 

  • Marsh SK, Bansal GS, Zammit C, Barnard R, Coope R, Roberts-Clarke D (1999) Increased expression of fibroblast growth factor 8 in human breast cancer. Oncogene 18:1053–1060

    Article  PubMed  CAS  Google Scholar 

  • McGrath BJ, Newman CI (1994) Genital herpes simplex infections in patients with the acquired immunodeficiency syndrome. Pharmacotherapy 14:529–542

    PubMed  CAS  Google Scholar 

  • McKeehan WL, Wang F, Kan M (1998) The heparan sulfate-fibroblast growth factor family: diversity of structure and function. Prog Nucleic Acids Res Mol Biol 59:135–176

    Article  CAS  Google Scholar 

  • Moore JP, Stevenson M (2000) New targets for inhibitors of HIV-1 replication. Rev Mol Cell Biol 1:40–49

    Article  CAS  Google Scholar 

  • Naggi A, Torri G, Casu B, Oreste P, Zoppetti G, Li J-P, Lindahl U (2001) Toward a biotechnological heparin through combined chemical and enzymatic modification of the Escherichia coli K5 polysaccharide. Semin Thromb Hemost 27:437–443

    Article  PubMed  CAS  Google Scholar 

  • Ogamo A, Metori A, Ukiyama N (1989) Reactivity toward chemical sulfation of hydroxyl groups of heparin. Carbohydr Res 193:165–172

    Article  CAS  Google Scholar 

  • Oreste P, Zoppetti G (2000) Glycosaminoglycans derived from K5 polysaccharide having high antithrombin activity and process for their preparation. EP01271394.7

    Google Scholar 

  • Oreste P, Zoppetti G (2002a) Glycosaminoglycans derived from K5 polysaccharide having high anticoagulant and antithrombotic activity and process for their preparation. US 2002/0062019

    Google Scholar 

  • Oreste P, Zoppetti G (2002b) Highly sulfated derivatives of K5 polysaccharide and their preparation. EP1366082

    Google Scholar 

  • Oreste P, Zoppetti G (2003a) Epimerized derivatives of K5 polysaccharide with a very high degree of sulfation. EP1513880

    Google Scholar 

  • Oreste P, Zoppetti G (2003b) Low molecular polysaccharides having antithrombin activity. EP1694714

    Google Scholar 

  • Oreste P, Zoppetti G (2003c) Process for the manufactiurer of N-acyl-(epi)K5-amine-O-sulfate-derivatives and product thus obtained. US 12/120,167

    Google Scholar 

  • Ørskov I, Ørskov F, Jann B, Jann K (1977) Serology, chemistry, and genetics of O and K antigens of Escherichia coli. Bacteriol Rev 41(3):667–710

    PubMed  Google Scholar 

  • Petitou M, Duchaussoy P, Lederman I, Choay J, Jacquinet JC, Sinay P, Torri G (1987) Synthesis of heparin fragments: a methyl-α pentaoside with high affinity for antithrombin III. Carbohydr Res 167:67–75

    Article  PubMed  CAS  Google Scholar 

  • Petitou M, Lormeau JC, Choay J (1988) Interaction of heparin and antithrombin III. The role of O-sulfate groups. Eur J Biochem 176:637–640

    Article  PubMed  CAS  Google Scholar 

  • Pinna D, Oreste P, Coradin T, Kajaste-Rudnisti A, Ghezzi S, Zoppetti G, Rotola A, Argnani R, Poli G, Manservigi R, Vicenzi E (2008) Inhibition of herpes simplex virus types 1 and 2 in vitro infection by sulfated derivatives of Escherichia Coli K5 polysaccharide. Antimicrob Agents Chemother 52:3078–3084

    Article  PubMed  CAS  Google Scholar 

  • Presta M, Oreste P, Zoppetti G, Belleri M, Vanghetti E, Leali D, Urbinati C, Bugatti A, Ronca R, Vicoli S, Moroni E, Stabile H, Camozzi M, Hernandez GA, Mitola S, Dell’Era P, Rusnati M, Ribatti D (2005) Antiangiogenetic activity of semisynthetic biotechnological heparins. Low molecular weight-sulfated Escherichia coli polysaccharide derivatives as fibroblast growth factor antagonists. Arterioscler Thromb Vasc Biol 25:71–76

    PubMed  CAS  Google Scholar 

  • Razi N, Feyzi E, Björk I, Naggi A, Casu B, Lindahl U (1995) Structural and functional properties of heparin analogs obtained by chemical sulphation of E. coli K5 capsular polysaccharide. Biochem J 270:11267–11275

    CAS  Google Scholar 

  • Rider CC (1997) The potential for heparin and its derivatives in the therapy and prevention of HIV-1 infection. Glycoconj J 14:639–642

    Article  PubMed  CAS  Google Scholar 

  • Rider CC, Coombe DR, Harrop HA, Hounsell EF, Bauer C, Feeney J et al (1994) Anti-HIV-1 activity of chemically modified heparins: correlation between binding to the V3 loop of gp120 and inhibition of cellular HIV-1 infection in vitro. Biochemistry 33:6974–6980

    Article  PubMed  CAS  Google Scholar 

  • Rusnati M, Tulipano G, Urbinati C, Tanghetti E, Giuliani R, Giacca M, Ciompi M, Corallini A, Presta M (1998) The basic domain in HIV-1 Tat protein as a target for polysulfonated heparin-mimicking extracellular Tat antagonists. J Biol Chem 273:16027–16037

    Article  PubMed  CAS  Google Scholar 

  • Rusnati M, Tulipano G, Spillmann D, Vanghetti E, Oreste P, Zoppetti G, Giacca M, Presta M (1999) Multiple interaction of HIV-1 Tat protein with sized-defined heparin oligosaccharides. J Biol Chem 274:28198–29205

    Article  PubMed  CAS  Google Scholar 

  • Rusnati M, Oreste P, Zoppetti G, Presta M (2005) Biotechnological engineering of heparin/heparan sulphate: a novel area of multi-target drug discovery. Curr Pharm Des 11:2489–2499

    Article  PubMed  CAS  Google Scholar 

  • Rusnati M, Vicenzi E, Donalisio M, Oreste P, Landolfo S, Lembo D (2009) Sulfated K5 Escherichia Coli polysaccharide derivatives: a novel class of candidate antiviral microbicides. Pharmacol Ther 123:310–322

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger J, Lax I, Lemmon M (1995) Regulation of growth factor activation by proteoglycans: What is the role of the low affinity receptors? Cell 83:357–360

    Article  PubMed  CAS  Google Scholar 

  • Shafti-Keramat S, Handisurya A, Kriehuber E, Menguzzi G, Slupetzky K, Kirnbauer R (2003) Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 77:13125–13135

    Article  PubMed  CAS  Google Scholar 

  • Shukla D, Spear PG (2001) Herpesviruses and heparan sulfate: an intimate relationship in aid of viral entry. J Clin Invest 108:503–510

    PubMed  CAS  Google Scholar 

  • Thunberg L, Bäckström G, Lindahl U (1982) Further characterization of the antithrombin-binding sequence in heparin. Carbohydr Res 100:393–410

    Article  PubMed  CAS  Google Scholar 

  • Tyagi M, Rusnati M, Presta M, Giacca M (2001) Internalization of HIV-1 Tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276:3254–3261

    Article  PubMed  CAS  Google Scholar 

  • Urbinati C, Bugatti A, Oreste P, Zoppetti G, Waltenberger J, Mitola S, Ribatti D, Presta M, Rusnati M (2004) Chemically sulfated Escherichia coli K5 polysaccharide derivatives as extracellular HIV-1 Tat protein antagonists. FEBS Lett 568:171–177

    Article  PubMed  CAS  Google Scholar 

  • Van Boeckel CAA, van Aelst SF, Wanegaars GN, Mellema JR (1987) Conformational analysis of synthetic heparin-like oligosaccharides containing α-L-idopyranosiluronic acid. Recl Trav Chim Pays Bas 106:19–29

    Article  Google Scholar 

  • Vann F, Schmidt MA, Jann B, Jann K (1981) The structure of the capsular polysaccharide (K5 antigen) of urinary-tract-infective Escherichia coli 010:K5:H4. Eur J Biochem 116:359–364

    Article  PubMed  CAS  Google Scholar 

  • Vicenzi E, Gatti A, Ghezzi S, Oreste P, Zoppetti G, Poli G (2003) Broad spectrum inhibition of HIV-1 infection by sulfated K5 Escherichia Coli polysaccharide derivatives. AIDS 17:177–181

    Article  PubMed  CAS  Google Scholar 

  • Viskov C, Lux F, Gervier, R, Colas G (2006) Method for producing K5 polysaccharide. WO 2006/030099

    Google Scholar 

  • Vives RR, Imberty A, Sattentau Q, Lortat-Jacob H (2005) Heparan sulfate targets the HIV-1 envelope glycoprotein gp 120 coreceptor binding site. J Biol Chem 22:21353–21357

    Article  Google Scholar 

  • von Tempelhoff GF, Heilmann L (2000) Antithrombotic therapy in gynecologic surgery and gynecologic oncology. Hematol Oncol Clin North Am 14:1151–1169

    Article  Google Scholar 

  • Whitfield DM, Sakar B (1991) Metal binding to heparin monosaccharides: D-glucosamine-6-sulphate, D-glucuronic acid and L-iduronic acid. J Inorg Biochem 41:157–170

    Article  PubMed  CAS  Google Scholar 

  • Whitley RJ, Roizman B (2001) Herpes simplex virus infections. Lancet 357:1513–1518

    Article  PubMed  CAS  Google Scholar 

  • Zacharski LR, Ornstein DL, Mamourian AC (2000) Low-molecular-weight heparin and cancer. Semin Thromb Hemost 26:69–77

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank all the participants in the research and, in particular, Dr. Crisafulli, Dr. Lembo, Dr. Rusnati, and Dr. Presta for the critical revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Oreste .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oreste, P., Zoppetti, G. (2012). Semi-synthetic Heparinoids. In: Lever, R., Mulloy, B., Page, C. (eds) Heparin - A Century of Progress. Handbook of Experimental Pharmacology, vol 207. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23056-1_18

Download citation

Publish with us

Policies and ethics