Skip to main content

The Cell Wall-Associated Kinases, WAKs, Regulate Cell Expansion and the Stress Response

  • Chapter
  • First Online:
Receptor-like Kinases in Plants

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 13))

  • 1513 Accesses

Abstract

The plant cell wall is secreted and assembled by cells to provide structure and shape, and thereby helps to determine the form of a plant organ. Control of the synthesis and directional enlargement of the wall is therefore crucial for plant development, but the wall also serves as a first defense against common plant stresses such as pathogens and physical wounding. There is now substantial evidence to suggest that the Cell Wall Associated Kinases, WAK s, are pectin receptors required for both normal cell elongation and for an induced stress response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrash EB, Bergmann DC (2010) Regional specification of stomatal production by the putative ligand CHALLAH. Development 137:447–455

    Article  PubMed  CAS  Google Scholar 

  • Anderson CM, Wagner TA, Perret M, He ZH, He D, Kohorn BD (2001) WAKs: cell wall-associated kinases linking the cytoplasm to the extracellular matrix. Plant Mol Biol 47:197–206

    Article  PubMed  CAS  Google Scholar 

  • Andreasson E, Ellis B (2010) Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci 15:106–113

    Article  PubMed  CAS  Google Scholar 

  • Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Hofte H, Plazinski J, Birch R et al (1998) Molecular analysis of cellulose biosynthesis in Arabidopsis. Science 279:717–720

    Article  PubMed  CAS  Google Scholar 

  • Bai L, Zhang G, Zhou Y, Zhang Z, Wang W, Du Y, Wu Z, Song CP (2009) Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca signalling, is required for abscisic acid responses in Arabidopsis thaliana. Plant J 60:314–327

    Article  PubMed  CAS  Google Scholar 

  • Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M, Schroeder JI, Grossniklaus U (2009) Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 136:3279–3288

    Article  PubMed  CAS  Google Scholar 

  • Boller T, He SY (2009) Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science 324:742–744

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17:3219–3226

    Article  PubMed  CAS  Google Scholar 

  • Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci USA 107:9452–9457

    Article  PubMed  CAS  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  PubMed  CAS  Google Scholar 

  • Cao X, Rogers SW, Butler J, Beevers L, Rogers JC (2000) Structural requirements for ligand binding by a probable plant vacuolar sorting receptor. Plant Cell 12:493–506

    Article  PubMed  CAS  Google Scholar 

  • Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. Plant Cell 18:465–476

    Article  PubMed  CAS  Google Scholar 

  • Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226

    Article  PubMed  CAS  Google Scholar 

  • Crowell EF, Gonneau M, Vernhettes S, Hofte H (2010) Regulation of anisotropic cell expansion in higher plants. C R Biol 333:320–324

    Article  PubMed  CAS  Google Scholar 

  • Decreux A, Messiaen J (2005) Wall-associated kinase WAK1 interacts with cell wall pectins in a calcium-induced conformation. Plant Cell Physiol 46:268–278

    Article  PubMed  CAS  Google Scholar 

  • Decreux A, Thomas A, Spies B, Brasseur R, Van Cutsem P, Messiaen J (2006) In vitro characterization of the homogalacturonan-binding domain of the wall-associated kinase WAK1 using site-directed mutagenesis. Phytochemistry 67:1068–1079

    Article  PubMed  CAS  Google Scholar 

  • Diener AC, Ausubel FM (2005) RESISTANCE TO FUSARIUM OXYSPORUM 1, a dominant Arabidopsis disease-resistance gene, is not race specific. Genetics 171:305–321

    Article  PubMed  CAS  Google Scholar 

  • Escobar-Restrepo JM, Huck N, Kessler S, Gagliardini V, Gheyselinck J, Yang WC, Grossniklaus U (2007) The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception. Science 317:656–660

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Li L, Ye H, Yu X, Algreen A, Yin Y (2009a) Three related receptor-like kinases are required for optimal cell elongation in Arabidopsis thaliana. Proc Natl Acad Sci USA 106:7648–7653

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Ye H, Li L, Yin Y (2009b) A family of receptor-like kinases are regulated by BES1 and involved in plant growth in Arabidopsis thaliana. Plant Signal Behav 4:784–786

    Article  PubMed  CAS  Google Scholar 

  • Haffani YZ, Silva-Gagliardi NF, Sewter SK, Grace Aldea M, Zhao Z, Nakhamchik A, Cameron RK, Goring DR (2006) Altered expression of PERK receptor kinases in Arabidopsis leads to changes in growth and floral organ formation. Plant Signal Behav 1:251–260

    Article  PubMed  Google Scholar 

  • Hara K, Yokoo T, Kajita R, Onishi T, Yahata S, Peterson KM, Torii KU, Kakimoto T (2009) Epidermal cell density is autoregulated via a secretory peptide, EPIDERMAL PATTERNING FACTOR 2 in Arabidopsis leaves. Plant Cell Physiol 50:1019–1031

    Article  PubMed  CAS  Google Scholar 

  • Harholt J, Suttangkakul A, Vibe Scheller H (2010) Biosynthesis of pectin. Plant Physiol 153:384–395

    Article  PubMed  CAS  Google Scholar 

  • He ZH, Fujiki M, Kohorn BD (1996) A cell wall-associated, receptor-like protein kinase. J Biol Chem 271:19789–19793

    Article  PubMed  CAS  Google Scholar 

  • He ZH, He D, Kohorn BD (1998) Requirement for the induced expression of a cell wall associated receptor kinase for survival during the pathogen response. Plant J 14:55–63

    Article  PubMed  CAS  Google Scholar 

  • He ZH, Cheeseman I, He D, Kohorn BD (1999) A cluster of five cell wall-associated receptor kinase genes, Wak1-5, are expressed in specific organs of Arabidopsis. Plant Mol Biol 39:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Hematy K, Hofte H (2008) Novel receptor kinases involved in growth regulation. Curr Opin Plant Biol 11:321–328

    Article  PubMed  CAS  Google Scholar 

  • Hematy K, Sado PE, Van Tuinen A, Rochange S, Desnos T, Balzergue S, Pelletier S, Renou JP, Hofte H (2007) A receptor-like kinase mediates the response of Arabidopsis cells to the inhibition of cellulose synthesis. Curr Biol 17:922–931

    Article  PubMed  CAS  Google Scholar 

  • Hematy K, Cherk C, Somerville S (2009) Host-pathogen warfare at the plant cell wall. Curr Opin Plant Biol 12:406–413

    Article  PubMed  CAS  Google Scholar 

  • Hou X, Tong H, Selby J, Dewitt J, Peng X, He ZH (2005) Involvement of a cell wall-associated kinase, WAKL4, in Arabidopsis mineral responses. Plant Physiol 139:1704–1716

    Article  PubMed  CAS  Google Scholar 

  • Keegstra K (2010) Plant cell walls. Plant Physiol 154:483–486

    Article  PubMed  CAS  Google Scholar 

  • Kohorn BD (2000) Plasma membrane-cell wall contacts. Plant Physiol 124:31–38

    Article  PubMed  CAS  Google Scholar 

  • Kohorn BD (2001) WAKs; cell wall associated kinases. Curr Opin Cell Biol 13:529–533

    Article  PubMed  CAS  Google Scholar 

  • Kohorn BD, Lane S, Smith TA (1992) An Arabidopsis serine/threonine kinase homologue with an epidermal growth factor repeat selected in yeast for its specificity for a thylakoid membrane protein. Proc Natl Acad Sci USA 89:10989–10992

    Article  PubMed  CAS  Google Scholar 

  • Kohorn BD, Kobayashi M, Johansen S, Friedman HP, Fischer A, Byers N (2006a) Wall-associated kinase 1 (WAK1) is crosslinked in endomembranes, and transport to the cell surface requires correct cell-wall synthesis. J Cell Sci 119:2282–2290

    Article  PubMed  CAS  Google Scholar 

  • Kohorn BD, Kobayashi M, Johansen S, Riese J, Huang LF, Koch K, Fu S, Dotson A, Byers N (2006b) An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. Plant J 46:307–316

    Article  PubMed  CAS  Google Scholar 

  • Kohorn BD, Johansen S, Shishido A, Todorova T, Martinez R, Defeo E, Obregon P (2009) Pectin activation of MAP kinase and gene expression is WAK2 dependent. Plant J 60:974–982

    Article  PubMed  CAS  Google Scholar 

  • Krichevsky A, Kozlovsky SV, Tian GW, Chen MH, Zaltsman A, Citovsky V (2007) How pollen tubes grow. Dev Biol 303:405–420

    Article  PubMed  CAS  Google Scholar 

  • Lally D, Ingmire P, Tong HY, He ZH (2001) Antisense expression of a cell wall-associated protein kinase, WAK4, inhibits cell elongation and alters morphology. Plant Cell 13:1317–1331

    Article  PubMed  CAS  Google Scholar 

  • Li YC, Montelione GT (1995) Human type-alpha transforming growth factor undergoes slow conformational exchange between multiple backbone conformations as characterized by nitrogen-15 relaxation measurements. Biochemistry 34:2408–2423

    Article  PubMed  CAS  Google Scholar 

  • Li H, Zhou SY, Zhao WS, Su SC, Peng YL (2009) A novel wall-associated receptor-like protein kinase gene, OsWAK1, plays important roles in rice blast disease resistance. Plant Mol Biol 69:337–346

    Article  PubMed  CAS  Google Scholar 

  • Mangeon A, Junqueira RM, Sachetto-Martins G (2010) Functional diversity of the plant glycine-rich proteins superfamily. Plant Signal Behav 5:99–104

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki S, Murata T, Sakurai-Ozato N, Kubo M, Demura T, Fukuda H, Hasebe M (2009) ANXUR1 and 2, sister genes to FERONIA/SIRENE, are male factors for coordinated fertilization. Curr Biol 19:1327–1331

    Article  PubMed  CAS  Google Scholar 

  • Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11:266–277

    Article  PubMed  CAS  Google Scholar 

  • Moscatiello R, Mariani P, Sanders D, Maathuis FJ (2006) Transcriptional analysis of calcium-dependent and calcium-independent signalling pathways induced by oligogalacturonides. J Exp Bot 57:2847–2865

    Article  PubMed  CAS  Google Scholar 

  • Mousavi A, Hotta Y (2005) Glycine-rich proteins: a class of novel proteins. Appl Biochem Biotechnol 120:169–174

    Article  PubMed  CAS  Google Scholar 

  • Mutwil M, Debolt S, Persson S (2008) Cellulose synthesis: a complex complex. Curr Opin Plant Biol 11:252–257

    Article  PubMed  CAS  Google Scholar 

  • Naithani S, Chookajorn T, Ripoll DR, Nasrallah JB (2007) Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. Proc Natl Acad Sci USA 104:12211–12216

    Article  PubMed  CAS  Google Scholar 

  • Nakhamchik A, Zhao Z, Provart NJ, Shiu SH, Keatley SK, Cameron RK, Goring DR (2004) A comprehensive expression analysis of the Arabidopsis proline-rich extensin-like receptor kinase gene family using bioinformatic and experimental approaches. Plant Cell Physiol 45:1875–1881

    Article  PubMed  CAS  Google Scholar 

  • Park AR, Cho SK, Yun UJ, Jin MY, Lee SH, Sachetto-Martins G, Park OK (2001) Interaction of the Arabidopsis receptor protein kinase Wak1 with a glycine-rich protein, AtGRP-3. J Biol Chem 276:26688–26693

    Article  PubMed  CAS  Google Scholar 

  • Rae PM, Kohorn BD, Wade RP (1980) The 10 kb Drosophila virilis 28S rDNA intervening sequence is flanked by a direct repeat of 14 base pairs of coding sequence. Nucleic Acids Res 8:3491–3504

    Article  PubMed  CAS  Google Scholar 

  • Ringli C, Keller B, Ryser U (2001) Glycine-rich proteins as structural components of plant cell walls. Cell Mol Life Sci 58:1430–1441

    Article  PubMed  CAS  Google Scholar 

  • Sampoli Benitez BA, Komives EA (2000) Disulfide bond plasticity in epidermal growth factor. Proteins 40:168–174

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Rodriguez C, Estevez JM, Llorente F, Hernandez-Blanco C, Jorda L, Pagan I, Berrocal M, Marco Y, Somerville S, Molina A (2009) The ERECTA receptor-like kinase regulates cell wall-mediated resistance to pathogens in Arabidopsis thaliana. Mol Plant Microbe Interact 22:953–963

    Article  PubMed  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  PubMed  CAS  Google Scholar 

  • Seifert GJ (2004) Nucleotide sugar interconversions and cell wall biosynthesis: how to bring the inside to the outside. Curr Opin Plant Biol 7:277–284

    Article  PubMed  CAS  Google Scholar 

  • Seifert GJ, Blaukopf C (2010) Irritable walls: the plant extracellular matrix and signaling. Plant Physiol 153:467–478

    Article  PubMed  CAS  Google Scholar 

  • Shpak ED, Berthiaume CT, Hill EJ, Torii KU (2004) Synergistic interaction of three ERECTA-family receptor-like kinases controls Arabidopsis organ growth and flower development by promoting cell proliferation. Development 131:1491–1501

    Article  PubMed  CAS  Google Scholar 

  • Sivaguru M, Ezaki B, He ZH, Tong H, Osawa H, Baluska F, Volkmann D, Matsumoto H (2003) Aluminum-induced gene expression and protein localization of a cell wall-associated receptor kinase in Arabidopsis. Plant Physiol 132:2256–2266

    Article  PubMed  CAS  Google Scholar 

  • Smith TA, Kohorn BD (1991) Direct selection for sequences encoding proteases of known specificity. Proc Natl Acad Sci USA 88:5159–5162

    Article  PubMed  CAS  Google Scholar 

  • Snyders S, Kohorn BD (1999) TAKs, thylakoid membrane protein kinases associated with energy transduction. J Biol Chem 274:9137–9140

    Article  PubMed  CAS  Google Scholar 

  • Snyders S, Kohorn BD (2001) Disruption of thylakoid-associated kinase 1 leads to alteration of light harvesting in Arabidopsis. J Biol Chem 276:32169–32176

    Article  PubMed  CAS  Google Scholar 

  • Szymanski DB (2009) Plant cells taking shape: new insights into cytoplasmic control. Curr Opin Plant Biol 12:735–744

    Article  PubMed  CAS  Google Scholar 

  • Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178:239–252

    Article  PubMed  CAS  Google Scholar 

  • van Zanten M, Snoek LB, Proveniers MC, Peeters AJ (2009) The many functions of ERECTA. Trends Plant Sci 14:214–218

    Article  PubMed  Google Scholar 

  • Verica JA, He ZH (2002) The cell wall-associated kinase (WAK) and WAK-like kinase gene family. Plant Physiol 129:455–459

    Article  PubMed  CAS  Google Scholar 

  • Verica JA, Chae L, Tong H, Ingmire P, He ZH (2003) Tissue-specific and developmentally regulated expression of a cluster of tandemly arrayed cell wall-associated kinase-like kinase genes in Arabidopsis. Plant Physiol 133:1732–1746

    Article  PubMed  CAS  Google Scholar 

  • Wagner TA, Kohorn BD (2001) Wall-associated kinases are expressed throughout plant development and are required for cell expansion. Plant Cell 13:303–318

    Article  PubMed  CAS  Google Scholar 

  • Willats WG, McCartney L, Mackie W, Knox JP (2001) Pectin: cell biology and prospects for functional analysis. Plant Mol Biol 47:9–27

    Article  PubMed  CAS  Google Scholar 

  • Winship LJ, Obermeyer G, Geitmann A, Hepler PK (2010) Under pressure, cell walls set the pace. Trends Plant Sci 15:363–369

    Article  PubMed  CAS  Google Scholar 

  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Crit Rev Biochem Mol Biol 35:253–289

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Mouille G, Pelloux J (2009) Homogalacturonan methyl-esterification and plant development. Mol Plant 2:851–860

    Article  PubMed  CAS  Google Scholar 

  • Xu SL, Rahman A, Baskin TI, Kieber JJ (2008) Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis. Plant Cell 20:3065–3079

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki N, Fry SC, Darvill AG, Albersheim P (1983) HopPathogen interactions: XXIV. Fragments isolated from suspension-cultured sycamore cell walls inhibit the ability of the cells to incorporate [C]leucine into proteins. Plant Physiol 72:864–869

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG (2005) Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol 139:1107–1124

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. Kohorn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kohorn, B.D., Kohorn, S.L. (2012). The Cell Wall-Associated Kinases, WAKs, Regulate Cell Expansion and the Stress Response. In: Tax, F., Kemmerling, B. (eds) Receptor-like Kinases in Plants. Signaling and Communication in Plants, vol 13. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23044-8_7

Download citation

Publish with us

Policies and ethics