Skip to main content

Removing Noise from Gene Trees

  • Conference paper
Algorithms in Bioinformatics (WABI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 6833))

Included in the following conference series:

Abstract

Reconciliation is the commonly used method for inferring the evolutionary scenario for a gene family. It consists in “embedding” an inferred gene tree into a known species tree, revealing the evolution of the gene family by duplications and losses. The main complaint about reconciliation is that the inferred evolutionary scenario is strongly dependant on the considered gene tree, as few misplaced leaves may lead to a completely different history, with significantly more duplications and losses. As using different phylogenetic methods with different parameters may lead to different gene trees, it is essential to have criteria to choose, among those, the appropriate one for reconciliation. In this paper, following the conclusion of a previous paper, we flag certain duplication vertices of a gene tree, the “non-apparent duplication” (NAD) vertices, as resulting from the misplacement of leaves, and consider the optimization problem of removing the minimum number of leaves leading to a tree without any NAD vertex. We develop a polynomial-time algorithm that is exact for two special classes of gene trees, and show a good performance on simulated data sets in the general case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir, A., Keselman, D.: Maximum agreement subtree in a set of evolutionary trees: matrics and efficient algorithms. SIAM J. Computing 26, 1656–1669 (1997)

    Article  MATH  Google Scholar 

  2. Blomme, T., Vandepoele, K., De Bodt, S., Silmillion, C., Maere, S., van de Peer, Y.: The gain and loss of genes during 600 millions years of vertebrate evolution. Genome Biology 7, R43 (2006)

    Article  Google Scholar 

  3. Bonizzoni, P., Della Vedova, G., Dondi, R.: Reconciling a gene tree to a species tree under the duplication cost model. Theoretical Computer Science 347, 36–53 (2005)

    Article  MATH  Google Scholar 

  4. Chauve, C., Doyon, J.-P., El-Mabrouk, N.: Gene family evolution by duplication, speciation and loss. J. Comput. Biol. 15, 1043–1062 (2008)

    Article  Google Scholar 

  5. Chauve, C., El-Mabrouk, N.: New perspectives on gene family evolution: Losses in reconciliation and a link with supertrees. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp. 46–58. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Chen, K., Durand, D., Farach-Colton, M.: Notung: Dating gene duplications using gene family trees. Journal of Computational Biology 7, 429–447 (2000)

    Article  Google Scholar 

  7. Cole, R., Farach-Colton, M., Hariharan, R., Przytycka, T., Thorup, M.: An o(nlogn) algorithm for the maximum agreement subtree problem for binary trees. SIAM J. Computing 30(5), 1385–1404 (2000)

    Article  MATH  Google Scholar 

  8. Cotton, J.A., Page, R.D.M.: Rates and patterns of gene duplication and loss in the human genome. Proceedings of the Royal Society of London Series B 272, 277–283 (2005)

    Article  Google Scholar 

  9. Doyon, J.-P., Scornavacca, C., Gorbunov, K., Szolloso, G., Ranwez, V., Berry, V.: An effi. algo. for gene/species trees parsim. reconc. with losses, dup. and transf. J. Comp. Biol. 6398, 93–108 (2010)

    Google Scholar 

  10. Durand, D., Haldórsson, B.V., Vernot, B.: A hybrid micro-macroevolutionary approach to gene tree reconstruction. Journal of Computational Biology 13, 320–335 (2006)

    Article  Google Scholar 

  11. Eichler, E.E., Sankoff, D.: Structural dynamics of eukaryotic chromosome evolution. Science 301, 793–797 (2003)

    Article  Google Scholar 

  12. Finden, C.R., Gordon, A.D.: Obtaining common pruned trees. J. Classification 2, 255–276 (1985)

    Article  Google Scholar 

  13. Goodman, M., Czelusniak, J., Moore, G.W., Romero-Herrera, A.E., Matsuda, G.: Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Systematic Zoology 28, 132–163 (1979)

    Article  Google Scholar 

  14. Gorecki, P., Tiuryn, J.: DLS-trees: a model of evolutionary scenarios. Theoretical Computer Science 359, 378–399 (2006)

    Article  MATH  Google Scholar 

  15. Guigó, R., Muchnik, I., Smith, T.F.: Reconstruction of ancient molecular phylogeny. Molecular Phylogenetics and Evolution 6, 189–213 (1996)

    Article  Google Scholar 

  16. Hahn, M.W.: Bias in phylogenetic tree reconciliation methods: implications for vertebrate genome evolution. Genome Biology 8(R141) (2007)

    Google Scholar 

  17. Hahn, M.W., Han, M.V., Han, S.-G.: Gene family evolution across 12 drosophilia genomes. PLoS Genetics 3, e197 (2007)

    Article  Google Scholar 

  18. Hallett, M., Lagergren, J., Tofigh, A.: Simultaneous identification of duplications and lateral transfers. In: RECOMB. ACM, New York (2004)

    Google Scholar 

  19. Li, W.H., Gu, Z., Wang, H., Nekrutenko, A.: Evolutionary analysis of the human genome. Nature 409, 847–849 (2001)

    Article  Google Scholar 

  20. Ma, B., Li, M., Zhang, L.: From gene trees to species trees. SIAM J. on Comput. 30, 729–752 (2000)

    Article  MATH  Google Scholar 

  21. Ohno, S.: Evolution by gene duplication. Springer, Berlin (1970)

    Book  Google Scholar 

  22. Page, R.D.M.: Maps between trees and cladistic analysis of historical associations among genes, organisms, and areas. Systematic Biology 43, 58–77 (1994)

    Google Scholar 

  23. Page, R.D.M.: Genetree: comparing gene and species phylogenies using reconciled trees. Bioinformatics 14, 819–820 (1998)

    Article  Google Scholar 

  24. Page, R.D.M., Charleston, M.A.: Reconciled trees and incongruent gene and species trees. DIMACS Series in Discrete Mathematics and Theoretical Computer Science 37, 57–70 (1997)

    MATH  Google Scholar 

  25. Sanderson, M.J., McMahon, M.M.: Inferring angiosperm phylogeny from EST data with widespread gene duplication. BMC Evolutionary Biology 7, S3 (2007)

    Article  Google Scholar 

  26. Steel, M., Warnow, T.: Kaikoura tree theorems:computing the maximum agreement subtree. Inform. Process. Lett. 48, 77–82 (1993)

    Article  MATH  Google Scholar 

  27. Tofigh, A., Hallett, M., Lagergren, J.: Simultaneous identification of duplications and lateral gene transfers. IEEE/ACM Trans. Comput. Biol. Bioinform. 8, 517–535 (2011)

    Article  Google Scholar 

  28. Wapinski, I., Pfeffer, A., Friedman, N., Regev, A.: Natural history and evolutionary principles of gene duplication in fungi. Nature 449, 54–61 (2007)

    Article  Google Scholar 

  29. Zhang, L.X.: On Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. Journal of Computational Biology 4, 177–188 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doroftei, A., El-Mabrouk, N. (2011). Removing Noise from Gene Trees. In: Przytycka, T.M., Sagot, MF. (eds) Algorithms in Bioinformatics. WABI 2011. Lecture Notes in Computer Science(), vol 6833. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23038-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23038-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23037-0

  • Online ISBN: 978-3-642-23038-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics