Advertisement

IROM: Information Retrieval-Based Ontology Matching

  • Hatem Mousselly-Sergieh
  • Rainer Unland
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6725)

Abstract

A crucial piece of semantic web development is the creation of viable ontology matching approaches to ensure interoperability in a wide range of applications such as information integration and semantic multimedia. In this paper, a new approach for ontology matching called IROM (Information Retrieval-based Ontology Matching) is presented. This approach derives the different components of an information retrieval (IR) framework based on the information provided by the input ontologies and supported by ontology similarity measures. Subsequently, a retrieval algorithm is applied to determine the correspondences between the matched ontologies. IROM was tested with ontology pairs taken from two resources for reference ontologies, OAEI and FOAM. The evaluation shows that IROM is competitive with top-ranked matchers on the benchmark test at OAEI campaign of 2009.

Keywords

Ontology matching information retrieval ontology similarity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, 1st edn. Addison Wesley, Reading (1999)Google Scholar
  2. 2.
    Budanitsky, A., Hirst, G.: Evaluating wordnet-based measures of lexical semantic relatedness. Computational Linguistics 32(1), 13–47 (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ehrig, M.: Ontology alignment: bridging the semantic gap. Springer-Verlag New York Inc., Heidelberg (2007)Google Scholar
  4. 4.
    Euzenat, J.: An API for ontology alignment. LNCS, pp. 698–712 (2004)Google Scholar
  5. 5.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag New York Inc., New York (2007)zbMATHGoogle Scholar
  6. 6.
    Jean-Mary, Y., Shironoshita, E., Kabuka, M.: Ontology matching with semantic verification. Web Semantics: Science, Services and Agents on the World Wide Web 7(3), 235–251 (2009)CrossRefGoogle Scholar
  7. 7.
    Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: International Conference Research on Computational Linguistics (ROCLING X), p. 9008+ (September 1997)Google Scholar
  8. 8.
    Kontostathis, A.: Essential dimensions of latent semantic indexing (lsi). In: Hawaii International Conference on System Sciences, vol. 40, Citeseer (2007)Google Scholar
  9. 9.
    Landauer: Handbook of Latent Semantic Analysis. Lawrence Erlbaum Associates, Mahwah (2007)Google Scholar
  10. 10.
    Letsche, T.A., Berry, M.W.: Large-scale information retrieval with latent semantic indexing (1997)Google Scholar
  11. 11.
    Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady 10, 707 (1966)zbMATHGoogle Scholar
  12. 12.
    Mao, M., Peng, Y., Spring, M.: An adaptive ontology mapping approach with neural network based constraint satisfaction. Web Semantics: Science, Services and Agents on the World Wide Web (2009)Google Scholar
  13. 13.
    Nagy, M., Vargas-Vera, M., Motta, E.: DSSim–managing uncertainty on the semantic web. In: Proceedings of the International Workshop on Ontology Matching, Citeseer (2007)Google Scholar
  14. 14.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: International Joint Conference on Artificial Intelligence, vol. 14, pp. 448–453 (1995)Google Scholar
  15. 15.
    Seddiqui, M., Aono, M.: Anchor-Flood: Results for OAEI-2009. In: Proceedings of Ontology Matching Workshop of the 8th International Semantic Web Conference, Chantilly, VA, USA (2009)Google Scholar
  16. 16.
    Styltsvig, H.B.: Ontology-based Information Retrieval. PhD thesis, Roskilde University, Denmark (2006)Google Scholar
  17. 17.
    Tang, J., Li, J., Liang, B., Huang, X., Li, Y., Wang, K.: Using Bayesian decision for ontology mapping. Web Semantics: Science, Services and Agents on the World Wide Web 4(4), 243–262 (2006)CrossRefGoogle Scholar
  18. 18.
    Wang, P., Xu, B.: LILY: the results for the ontology alignment contest OAEI 2007. In: Proceedings of ISWC 2007 Ontology Matching Workshop, Busan, Korea, Citeseer (2007)Google Scholar
  19. 19.
    Wu, Z., Palmer, M.: Verbs semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics, pp. 133–138. Association for Computational Linguistics, Morristown (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hatem Mousselly-Sergieh
    • 1
  • Rainer Unland
    • 2
  1. 1.Chair of Distributed Information SystemsUniversity of PassauPassauGermany
  2. 2.Data Management Systems and Knowledge Representation GroupUniversity of Duisburg-EssenEssenGermany

Personalised recommendations