Skip to main content

Dynamic World Modelling by Dichotomic Information Sets and Graphical Inference

With Focus on 3D Facial Pose Tracking

  • Conference paper
Semantic Multimedia (SAMT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6725))

Included in the following conference series:

  • 569 Accesses

Abstract

This report establishes a novel concept for tracking complex and articulated objects in the presence of high observation uncertainties utilising Markov random fields Markov chains (MRFMCs) and a novel paradigm of modelling visual perception. The approach is rooted in ideas from information fusion and cognitive sciences. The problem is to track non-rigid and articulated objects in the 3D space. The aim is to precisely estimate landmarks with high certainty for fitting accurate object models and secondary states like the orientation under partial occlusions. The targeted system is characterised by a high degree of generality. Previous solutions are relatively limited in robustness and accuracy. The new concept is motivated by the fact that all previous tracking approaches rely on semantic information, that is classified signal signatures, while neglecting all further non-classifiable and thus semantically unrelated information present in the scene herein abstracted as structure. By observing salient cues in structure and by learning and incorporating topological relations between salient cues and semantic features it is intended to tackle the major problem of visual tracking, namely accurate and robust inference in the presence of high observation uncertainties. The notion of the dichotomy of semantic and structure is not covered in previous literature. The new concept constitutes a novel direction in the design and implementation of visual perception and tracking networks. While the ideas of dynamic world modelling and intelligent forgetting stem from principles of information fusion, the principle of fusing semantical with structural information from intelligent exploring is an entirely original contribution and is inspired by ideas from cognitive sciences and linguistics. It is deduced from the inherent yet unrevealed principle of appearance modelling, which is based on incorporating object-related appearance information without classification. In this report the presented system is applied to high-level facial pose tracking and compared to a state-of-the-art reference method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnew, D., Constable, C.: Geophysical data analysis: Multivariate random variables, correlation and error propagation (2008)

    Google Scholar 

  2. Allen, P.K.: 3d photography: Point based rigid registration. Technical report, Columbia Department of Computer Science, Columbia University (2005)

    Google Scholar 

  3. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-d point sets. IEEE Trans. PAMI 9, 698–700 (1987)

    Article  Google Scholar 

  4. Bishop, C.M.: A new framework for machine learning. In: Zurada, J.M., Yen, G.G., Wang, J. (eds.) Computational Intelligence: Research Frontiers. LNCS, vol. 5050, pp. 1–24. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning: Graphical Models. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  6. Blake, A., Isard, M.: Active Contours. Springer, Heidelberg (1997)

    Google Scholar 

  7. Chang, W.-Y., Chen, C.-S., Hung, Y.-P.: Tracking by parts: A bayesian approach with component collaboration. IEEE Transactions on Systems, Man, and Cybernetics 39, 375–388 (2009)

    Article  Google Scholar 

  8. Constable, C., Agnew, D.C.: Geophysical data analysis: Statistics (2005)

    Google Scholar 

  9. Crowley, J.L., Demazeau, Y.: Principle and techniques for sensor data fusion. Signal Processing 32, 5–27 (1993)

    Article  Google Scholar 

  10. Del Bue, A., Agapito, L.: Non-rigid 3d shape recovery using stereo factorization. In: Asian Conference of Computer Vision (ACCV), vol. 1, pp. 25–30 (2004)

    Google Scholar 

  11. Del Bue, A., Smeraldi, F., Agapito, L.: Non-rigid structure from motion using ranklet-based tracking and non-linear optimization. IVC 25(3), 297–310 (2007)

    Article  Google Scholar 

  12. Doucet, A., Johansen, A.M.: A tutorial on particle filtering and smoothing: Fiteen years later (2009)

    Google Scholar 

  13. Du, W., Piater, J.: A probabilistic approach to integrating multiple cues in visual tracking. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 225–238. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Gales, M.J.F., Airey, S.S.: Product of gaussians for speech recognition. In: Computer Speech and Language (2006)

    Google Scholar 

  15. Hall, D.: Mathematical Techniques in Multisensor Data Fusion. Artech House, Boston (1992)

    Google Scholar 

  16. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  17. Haug, A.J.: A tutorial on bayesian estimation and tracking techniques applicable to nonlinear and non-gaussian processes. Technical report, The MITRE Corporation (2005)

    Google Scholar 

  18. Isard, M.: Pampas: Real-valued graphical models for computer vision. Technical report, Microsoft Research (2003)

    Google Scholar 

  19. Isard, M., Blake, A.: Condensation - conditional density propagation for visual tracking (1998)

    Google Scholar 

  20. Johnson, J.K.: Estimation of gmrfs by recursive cavity modeling. Technical report, EECS Dept., MIT (2004)

    Google Scholar 

  21. Jordan, M.I., Weiss, Y.: The Handbook of Brain Theory and Neural Networks. Graphical models: Probabilistic inference. MIT Press, Cambridge (2002)

    Google Scholar 

  22. Jordan, M.I.: An introduction to probabilistic graphical models. Technical report, University of California, Berkeley (2003)

    Google Scholar 

  23. Kropatsch, W.: Tracking with structure in computer vision twist-cv. Technical report, Patter Recognition and Image Processing Group, TU Wien (2005)

    Google Scholar 

  24. Li, T., Kallem, V., Singaraju, D., Vidal, R.: Projective factorization of multiple rigid-body motions. In: CVPR 2007, pp. 1–6 (2007)

    Google Scholar 

  25. Malioutov, D.M.: Approximate Inference in Gaussian Graphical Models. PhD thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge (2008)

    Google Scholar 

  26. Malioutov, D.M., Johnson, J.K., Willsky, A.S.: Walk-sums and belief propagation in gaussian graphical models. Journal of Machine Learning Research 7, 2031–2064 (2006)

    MATH  Google Scholar 

  27. Mills, S.: Stereo-motion analysis of image sequences. In: Proceedings of Digital Image & Vision Computing: Techniques and Applications (DICTA), pp. 515–520 (1997)

    Google Scholar 

  28. Mills, S., Novins, K.: Graph-based object hypothesis. New Zealand Journal of Computing 7, 21–29 (1998)

    Google Scholar 

  29. Mills, S., Novins, K.: Motion segmentation in long image sequences. In: Proceedings of the British Machine Vision Conference, pp. 162–171 (2000)

    Google Scholar 

  30. Murphy, K.P.: An introduction to graphical models. Technical report, University of British Columbia, Vancouver, Canada (2001)

    Google Scholar 

  31. Newman, P., Leonard, J.: A matrix oriented note on joint, marginal, and conditional multivariate gaussian distributions. Technical report, Massachusetts Institute of Technology (2006)

    Google Scholar 

  32. Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House Publishers, Boston (2004)

    MATH  Google Scholar 

  33. Rong Li, X., Jilkov, V.P.: Survey of maneuvering target tracking. part i: Dynamic models. IEEE Transactions on Aerospace and Electronic Systems 39, 1333–1364 (2003)

    Article  Google Scholar 

  34. Sanfeliu, A., Serratosa, F.: Learning and recognising 3d models represented by multiple views by means of methods based on random graphs. In: Proceedings International Conference on Image Processing, ICIP (2003)

    Google Scholar 

  35. Sigal, L., Zhu, Y., Comaniciu, D., Black, M.J.: Tracking complex objects using graphical object models. In: Jähne, B., Mester, R., Barth, E., Scharr, H. (eds.) IWCM 2004. LNCS, vol. 3417, pp. 223–234. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  36. Sinha, A., Chen, H., Danu, D.G., Kirubarajan, T., Farooq, M.: Estimation and decision fusion: A survey. Neurocomputing 71, 2650–2656 (2008)

    Article  Google Scholar 

  37. Smith, D., Singh, S.: Approaches to multisensor data fusion in target tracking: A survey. IEEE Transactions on Knowledge and Data Engineering 18(12), 1696–1710 (2006)

    Article  Google Scholar 

  38. Steffens, M., Krybus, W., Kohring, C.: Linear gaussian error models from component matrices for 3d graphical tracking networks. In: Submitted to SAMT 2010 (2010)

    Google Scholar 

  39. Steffens, M., Krybus, W., Kohring, C.: Spatio-temporal gaussian graphical models as tracking networks. In: Submitted to SAMT 2010 (2010)

    Google Scholar 

  40. Su, C., Huang, L.: Spatio-temporal graphical-model-based multiple facial feature tracking. EURASIP Journal on Applied Signal Processing 13, 2091–2100 (2005)

    Article  Google Scholar 

  41. Sudderth, E.B., Ihler, A.T., Freeman, W.T., Willsky, A.S.: Nonparametric belief propagation. In: Conference Proceedings Computer Vision and Pattern Recognition. IEEE, Los Alamitos (2003)

    Google Scholar 

  42. Tang, C.-Y., Hung, Y.-P., Shih, S.-W., Chen, Z.: A 3d feature-based tracker for multiple object tracking. In: Proceedings of the National Science Council, Republic of China, Part A: Physical Science and Engineering, pp. 151–168 (1999)

    Google Scholar 

  43. Taycher, L., Fisher III, J.W., Darrell, T.: Combining object and feature dynamics in probabilistic tracking. Computer Vision and Image Understanding 108, 243–260 (2007)

    Article  Google Scholar 

  44. Vidal, R., Abretske, D.: Nonrigid shape and motion from multiple perspective views. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 205–218. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  45. Vidal, R., Ma, Y.: A unified algebraic approach to 2-d and 3-d motion segmentation. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 1–15. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  46. Vidal, R., Ma, Y., Soatto, S., Sastry, S.: Two-view multibody structure from motion. IJCV 68(1), 7–25 (2006)

    Article  Google Scholar 

  47. Vidal, R., Ravichandran, A.: Optical flow estimation and segmentation of multiple moving dynamic textures. In: CVPR 2005, pp. II: 516–521 (2005)

    Google Scholar 

  48. Vidal, R., Singaraju, D.: A closed form solution to direct motion segmentation. In: CVPR 2005, pp. II: 510–515 (2005)

    Google Scholar 

  49. Wang, P., Ji, Q.: Robust face tracking via collaboration of generic and specific models. IEEE Transactions on Image Processing 17, 1189–1199 (2008)

    Article  Google Scholar 

  50. Weingarten, J.W., Gruener, G., Siegwart, R.: Probabilistic plane fitting in 3d and an application to robotic mapping. In: IEEE International Conference on Robotics and Automation (2004)

    Google Scholar 

  51. Yang, M., Wu, Y.: Granularity and elasticity adaptation in visual tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2008)

    Google Scholar 

  52. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Understanding belief propagation and its generalizations. Technical report. MIT, Cambridge (2001)

    Google Scholar 

  53. Yu, T., Wu, Y.: Decentralized multiple target tracking using netted collaborative autonomous trackers. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, pp. 939–946 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Steffens, M., Krybus, W., Kohring, C. (2011). Dynamic World Modelling by Dichotomic Information Sets and Graphical Inference. In: Declerck, T., Granitzer, M., Grzegorzek, M., Romanelli, M., Rüger, S., Sintek, M. (eds) Semantic Multimedia. SAMT 2010. Lecture Notes in Computer Science, vol 6725. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23017-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23017-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23016-5

  • Online ISBN: 978-3-642-23017-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics