Skip to main content

Direct Reconstruction Methods in Optical Tomography

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2035))

Summary

The aim of this chapter is to present the essential physical ideas that are needed to describe the propagation of light in a random medium. We also discuss various direct reconstruction methods for several inverse problems in optical tomography at mesoscopic and macroscopic scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.R. Arridge, Optical tomography in medical imaging. Inverse Probl. 15(2), R41–R93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. M.W. van Rossum, T.W. Nieuwenhuizen, Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion. Rev. Mod. Phys., 71, 313–371 (1999)

    Article  Google Scholar 

  3. A. Ishimaru, Wave Propagation and Scattering in Random Media. IEEE Press, Piscataway, NJ (1997)

    MATH  Google Scholar 

  4. K.M. Case, P.F. Zweifel, Linear transport theory. Addison-Wesley, Reading, MA, (1967)

    MATH  Google Scholar 

  5. C.L. Leakeas, E.W. Larsen, Generalized Fokker-Planck approximations of particle transport with highly forward-peaked scattering. Nucl. Sci. Eng. 137, 236–250 (2001)

    Google Scholar 

  6. L. Ryzhik, G. Papanicolaou, J.B. Keller, Transport equations for elastic and other waves in random media. Wave Motion 24, 327–370 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Sharpe et al., Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296, 541–545 (2002)

    Article  Google Scholar 

  8. C. Vinegoni et al., In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography. Nature Methods 5, 45–47 (2008)

    Article  Google Scholar 

  9. G. Bal, Inverse transport theory and applications. Inverse Probl. 25(5), 053001 (48pp) (2009)

    Google Scholar 

  10. G. Bal, I. Langmore, F. Monard, Inverse transport with isotropic sources and angularly averaged measurements. Inverse Probl. Imag. 2, 23–42 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Panasyuk, J.C. Schotland, V.A. Markel, Radiative transport equation in rotated reference frames. J. Phys. A 39, 115–137 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. A.D. Kim, J.B. Keller, Light propagation in biological tissue. J. Opt. Soc. Am A 20, 92–98 (2003)

    Article  Google Scholar 

  13. A.D. Kim, Transport theory for light propagation in biological tissue. J. Opt. Soc. Am A 21, 820–827 (2004)

    Article  Google Scholar 

  14. A.D. Kim, J.C. Schotland, Self-consistent scattering theory for the radiative transport equation. J. Opt. Soc. Am A 23, 596–602 (2006)

    Article  MathSciNet  Google Scholar 

  15. E.W. Larsen, J.B. Keller, Asymptotic solution of neutron-transport problems for small mean free paths. J. Math. Phys. 15, 75–81 (1974)

    Article  MathSciNet  Google Scholar 

  16. C.L. Epstein, J.C. Schotland, The bad truth about Laplace’s transform. SIAM Rev. 50, 504–520 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. J.C. Schotland, Continuous-wave diffusion imaging. J. Opt. Soc. Am A 14, 275–279 (1997)

    Article  Google Scholar 

  18. J.C. Schotland, V.A. Markel, Inverse scattering with diffusing waves. J. Opt. Soc. Am A 18, 2767–2777 (2001)

    Article  MathSciNet  Google Scholar 

  19. V.A. Markel, J.C. Schotland, Symmetries, inversion formulas, and image reconstruction for optical tomography. Phys. Rev. E 70 (2004)

    Google Scholar 

  20. V.A. Markel, J.C. Schotland, Effects of sampling and limited data in optical tomography. App. Phys. Lett. 81, 1180–1182 (2002)

    Article  Google Scholar 

  21. Z.M. Wang, G. Panasyuk, V.A. Markel, J.C. Schotland, Experimental demonstration of an analytic method for image reconstruction in optical diffusion tomography with large data sets. Opt. Lett. 30, 3338–3340 (2005)

    Article  Google Scholar 

  22. K. Lee, V. Markel, A.G. Yodh, S. Konecky, G.Y. Panasyuk, J.C. Schotland, Imaging complex structures with diffuse light. Opt. Express 16, 5048–5060 (2008)

    Article  Google Scholar 

  23. H.E. Moses, Calculation of the scattering potential from reflection coefficients. Phys. Rev. 102, 550–67 (1956)

    Article  MathSciNet  Google Scholar 

  24. R. Prosser, Formal solutions of the inverse scattering problem. J. Math. Phys. 10, 1819–1822 (1969)

    Article  MathSciNet  Google Scholar 

  25. V.A. Markel, J.A. O’Sullivan, J.C. Schotland, Inverse problem in optical diffusion tomography. IV. Nonlinear inversion formulas. J. Opt. Soc. Am A 20, 903–912 (2003)

    Google Scholar 

  26. S. Moskow, J.C. Schotland, Convergence and stability of the inverse scattering series for diffuse waves. Inverse Probl. 24, 065005 (16pp) (2008)

    Google Scholar 

  27. J.C. Schotland, V.A. Markel, Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Probl. and Imag. 1, 181–188 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. V.A. Markel, L. Florescu, J.C. Schotland, Single-Scattering Optical Tomography. Phys. Rev. E 79 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the NSF under the grants DMS-0554100 and EEC-0615857, and by the NIH under the grant R01EB004832.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Schotland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schotland, J.C. (2012). Direct Reconstruction Methods in Optical Tomography. In: Ammari, H. (eds) Mathematical Modeling in Biomedical Imaging II. Lecture Notes in Mathematics(), vol 2035. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22990-9_1

Download citation

Publish with us

Policies and ethics