Skip to main content

Raman Spectroscopy: Characterization of Edges, Defects, and the Fermi Energy of Graphene and sp 2 Carbons

  • Chapter
  • First Online:
Graphene Nanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

Abstract

From the basic physical concepts relating to the Raman spectra of graphene, we can develop characterization methods for point defects and the edge structure. Furthermore, the Fermi energy can be studied by the phonon softening phenomena of the Raman spectra. Finally, we also discuss recent progress on near-field optics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this chapter, we frequently use the word “feature” to refer to spectral features. For example, “The first-order Raman feature” means that the Raman spectral line originates from a first-order Raman scattering process.

  2. 2.

    This means that A changes for different E laser and we cannot directly compare the I D  ∕ I G values of two different samples observed by two different values of E laser.

  3. 3.

    It is noted that \({d}_{a}\) connects two k points on a constant energy contour.

  4. 4.

    The G band in carbon nanotubes splits due to the curvature along the tube circumference.

References

  1. R. Saito, M. Hofmann, G. Dresselhaus, A. Jorio, M.S. Dresselhaus, Advances in Physics 60(3), 413 (2011)

    Article  ADS  Google Scholar 

  2. F. Tuinstra, J.L. Koenig, J. Phys. Chem. 53, 1126 (1970)

    Article  Google Scholar 

  3. F. Tuinstra, J.L. Koenig, J. Compos. Mater. 4, 492 (1970)

    Google Scholar 

  4. R.J. Nemanich, S.A. Solin, Solid State Comm. 23, 417 (1977)

    Article  ADS  Google Scholar 

  5. R.J. Nemanich, S.A. Solin, Phys. Rev. B 20, 392 (1979)

    Article  ADS  Google Scholar 

  6. C. Kittel, in Introduction to Solid State Physics, 6th edn. (Wiley, New York, 1986)

    Google Scholar 

  7. N.W. Ashcroft, N.D. Merman, in Solid State Physics, (Holt Rinehart and Winston, New York, 1976)

    Google Scholar 

  8. A. Jorio, R. Saito, M.S. Dresselhaus, G. Dresselhaus, Raman Spectroscopy in Graphene Related Systems (Wiley, WeinHeim, 2011)

    Book  Google Scholar 

  9. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cançado, A. Jorio, R. Saito, Phys. Chem. Chem. Phys. 9, 1276 (2007)

    Article  Google Scholar 

  10. A. Jorio, M.S. Dresselhaus, G. Dresselhaus, Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications. Springer Series on Topics in Applied Physics (Springer, Berlin, 2008), vol. 111

    Google Scholar 

  11. M.S. Dresselhaus, G. Dresselhaus, R. Saito, A. Jorio, Phys. Rep. 409, 47 (2005).

    Article  ADS  Google Scholar 

  12. M.S. Dresselhaus, R. Kalish, Ion Implantation in Diamond, Graphite and Related Materials. Springer Series in Materials Science (Springer, Berlin, 1992), vol. 22

    Google Scholar 

  13. T.P. Mernagh, R.P. Cooney, R.A. Johnson, Carbon 22, 39 (1984)

    Article  Google Scholar 

  14. M.M. Lucchese, F. Stavale, E.H. Ferriera, C.Vilane, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, A. Jorio, Carbon 48, 1592 (2010)

    Article  Google Scholar 

  15. R. Tsu, J. H. Gonzalez, I.C. Hernandez, Solid State Comm. 27, 507 (1978)

    Article  ADS  Google Scholar 

  16. R. Saito, A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, M.A. Pimenta, Phys. Rev. Lett. 88, 027401 (2002)

    Article  ADS  Google Scholar 

  17. R.P. Vidano, D.B. Fishbach, L.J. Willis, T.M. Loehr, Solid State Comm. 39, 341 (1981)

    Article  ADS  Google Scholar 

  18. P. Lespade, A. Marchand, M. Couzi, F. Cruege, Carbon 22, 375 (1984)

    Article  Google Scholar 

  19. P. Lespade, R. Al-Jishi, M.S. Dresselhaus, Carbon 20, 427 (1982)

    Article  Google Scholar 

  20. H. Wilhelm, M. Lelausian, E. McRae, B. Humbert, J. Appl. Phys. 84, 6552 (1998)

    Article  ADS  Google Scholar 

  21. C. Thomsen, S. Reich, Phys. Rev. Lett. 85, 5214 (2000)

    Article  ADS  Google Scholar 

  22. R. Saito, A. Grüneis, Ge.G. Samsonidze, V.W. Brar, G. Dresselhaus, M.S. Dresselhaus, A. Jorio, L.G. Cançado, C. Fantini, M.A. Pimenta, A.G. Souza Filho, New J. Phys. 5, 157 (2003)

    Google Scholar 

  23. X. Jia, M. Hofmann, V. Meunier, B.G. Sumpter, J. Campos-Delgado, J.M. Romo-Herrera, H. Son, Y.-P. Hsieh, A. Reina, J. Kong, M. Terrones, M.S. Dresselhaus, Science 323, (2009)

    Google Scholar 

  24. T. Enoki, Y. Kobayashi, K.-I. Fukui, Int. Rev. Phys. Chem. 26, 609 (2007)

    Article  Google Scholar 

  25. X. Jia, J. Campos-Delgado, M. Terrones, V. Meunier, M.S. Dresselhaus, Nanoscale 3(3), 1008 (2010)

    Google Scholar 

  26. A. Grüneis, R. Saito, T. Kimura, L.G. Cançado, M.A. Pimenta, A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 65, 155405 (2002)

    Article  ADS  Google Scholar 

  27. J. Jiang, R. Saito, A. Grüneis, S.G. Chou, Ge.G. Samsonidze, A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 71, 045417 (2005)

    Google Scholar 

  28. S. Piscanec, M. Lazzeri, M. Mauri, A.C. Ferrari, J. Robertson, Phys. Rev. Lett. 93, 185503 (2004)

    Article  ADS  Google Scholar 

  29. M. Lazzeri, F. Mauri, Phys. Rev. Lett. 97(26), 266407 (2006)

    Article  ADS  Google Scholar 

  30. K. Ishikawa, T. Ando, J. Phys. Soc. Jpn. 75, 84713 (2006)

    Article  Google Scholar 

  31. V.N. Popov, P. Lambin, Phys. Rev. B 73, 085407 (2006)

    Article  ADS  Google Scholar 

  32. K. Sasaki, R. Saito, G. Dresselhaus, M.S. Dresselhaus, H. Farhat, J. Kong, Phys. Rev. B 77, 245441 (2008)

    Article  ADS  Google Scholar 

  33. E.H. Martins Ferreira, Marcus V.O. Moutinho, F. Stavale, M.M. Lucchese, Rodrigo B. Capaz, C.A. Achete, A. Jorio, Phys. Rev. B 82, 125429 (2010)

    Google Scholar 

  34. A. Jorio, M.M. Lucchese, F. Stavale, E.H.M. Ferreira, M.V.O. Moutinho, R.B. Capaz, C.A. Achete, J. Phys. Condens. Matter 22, 334204 (2010)

    Article  Google Scholar 

  35. M. Lazzeri, C. Attaccalite, L. Wirtz, F. Mauri, Phys. Rev. B 78, 081406R (2008)

    Article  ADS  Google Scholar 

  36. K. Sato, R. Saito, Y. Oyama, J. Jiang, L.G. Cançado, M.A. Pimenta, A. Jorio, Ge.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, Chem. Phys. Lett. 427, 117 (2006)

    Google Scholar 

  37. L.G. Cançado, M.A. Pimenta, R.A. Neves, G. Medeiros-Ribeiro, T. Enoki, Y. Kobayashi, K. Takai, K. Fukui, M.S. Dresselhaus, R. Saito, A. Jorio, Phys. Rev. Lett. 93, 047403 (2004)

    Article  ADS  Google Scholar 

  38. L.G. Cançado, M.A. Pimenta, B.R. Neves, M.S. Dantas, A. Jorio, Phys. Rev. Lett. 93, 247401 (2004)

    Article  ADS  Google Scholar 

  39. L.G. Cancado, A. Jorio, and M.A. Pimenta, Phys. Rev. B 76, 064304 (2007)

    Article  ADS  Google Scholar 

  40. L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, A. Jorio, L.N. Coelho, R. Magalhaes Paniago, M.A. Pimenta, Appl. Phys. Lett. 88, 3106 (2006)

    Article  ADS  Google Scholar 

  41. E.B. Barros, N.S. Demir, A.G. Souza Filho, J. Mendes Filho, A. Jorio, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 71, 165422 (2005)

    Article  ADS  Google Scholar 

  42. L.G. Cançado, A. Jorio, E.H. Martins Ferreira, F. Stavale, C.A. Achete, R.B. Capaz, M.V.O. Moutinho, A. Lombardo, T.S. Kulmala, A.C. Ferrari, Nano Lett. 11(8), 3190–3196 (2011)

    Article  Google Scholar 

  43. M. Fujita, K. Wakabayashi, K. Nakadw, K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996)

    Article  ADS  Google Scholar 

  44. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  45. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458(7240), 872 (2009)

    Article  ADS  Google Scholar 

  46. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458, 877 (2009)

    Article  ADS  Google Scholar 

  47. M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  48. K. Kusakabe M. Maruyama, Phys. Rev. B 67(9), 92406 (2003)

    Article  ADS  Google Scholar 

  49. L.M. Woods, G.D. Mahan, Phys. Rev. B 61, 10651 (2000)

    Article  ADS  Google Scholar 

  50. K. Sasaki, R. Saito, Progr. Theor. Phys. Suppl. 176, 253 (2008)

    Article  MATH  Google Scholar 

  51. K. Sasaki, S. Murakami, R. Saito, J. Phys. Soc. Jpn. 75, 074713 (2006)

    Article  ADS  Google Scholar 

  52. K. Sasaki, K. Sato, R. Saito, J. Jiang, S. Onari, Y. Tanaka, Phys. Rev. B 75(23), 235430 (2007)

    Article  ADS  Google Scholar 

  53. K. Sasaki, J. Jiang, R. Saito, S. Onari, Y. Tanaka, J. Phys. Soc. Jpn. 76, 033702 (2007)

    Article  ADS  Google Scholar 

  54. M. Igami, M. Fujita, S. Mizuno, Appl. Surf. Sci. 130–132, 870 (1998)

    Article  Google Scholar 

  55. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 59, 2388 (1999)

    Article  ADS  Google Scholar 

  56. W. Ren, R. Saito, L. Gao, F. Zheng, Z. Wu, B. Liu, M. Furukawa, J. Zhao, Z. Chen, H.M. Cheng, Phys. Rev. B 81, 035412 (2010)

    Article  ADS  Google Scholar 

  57. K. Sasaki, M. Yamamoto, S. Murakami, R. Saito, M.S. Dresselhaus, K. Takai, T. Mori, T. Enoki, K. Wakabayashi, Phys. Rev. B 80(15), 155450 (2009)

    Article  ADS  Google Scholar 

  58. Y. You, Z. Ni, T. Yu, Z. Shen, Appl. Phys. Lett. 93, 163112 (2008)

    Article  ADS  Google Scholar 

  59. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K.S. Novoselov, D.M. Basko, A.C. Ferrari, Nano Lett. 9(4), 1433 (2009)

    Article  ADS  Google Scholar 

  60. S. Neubeck, Y.M. You, Z.H. Ni, P. Blake, Z.X. Shen, A.K. Geim, K.S. Novoselov, Appl. Phys. Lett. 97, 053110 (2010)

    Article  ADS  Google Scholar 

  61. L.G. Cançado, M.A. Pimenta, R. Saito, A. Jorio, L.O. Ladeira, A. Grüneis, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 66, 035415 (2002)

    Article  ADS  Google Scholar 

  62. L.G. Cançado, A. Reina Cecco, J. Kong, M.S. Dresselhaus, Phys. Rev. B 77, 245408 (2008)

    Article  ADS  Google Scholar 

  63. A. Grüneis, R. Saito, Ge.G. Samsonidze, T. Kimura, M.A. Pimenta, A. Jorio, A.G. Souza Filho, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 67, 165402 (2003)

    Google Scholar 

  64. R. Saito, M. Furukawa, G. Dresselhaus, M.S. Dresselhaus, J. Phys. Condens. Matter 22, 334208 (2010)

    Article  Google Scholar 

  65. L. Wirtz, M. Lazzeri, F. Mauri, A. Rubio, Phys. Rev. B 71, 241402(R) (2005)

    Google Scholar 

  66. R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 57, 4145 (1998)

    Article  ADS  Google Scholar 

  67. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Book  Google Scholar 

  68. J. Zhou J. Dong, Appl. Phys. Lett. 91, 173108 (2007)

    Article  ADS  Google Scholar 

  69. K. Sasaki, R. Saito, K. Wakabayashi, T. Enoki, J. Phys. Soc. Jpn. 79, 044603 (2010)

    Article  ADS  Google Scholar 

  70. C. Cong, T. Yu, H. Wang, ACS Nano 6, 3175 (2010)

    Article  Google Scholar 

  71. M. Begliarbekov, O. Sul, S. Kalliakos, E.H. Yang, S. Strauf, Appl. Phys. Lett. 97, 031908 (2010)

    Article  ADS  Google Scholar 

  72. A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, A.K. Sood, Nat. Nanotechnol. 3, 210 (2008)

    Article  Google Scholar 

  73. A. Das, B. Chakraborty, S. Piscanec, S. Pisana, A.K. Sood, and A. C. Ferrari, Phys. Rev. B 79, 155417 (2009)

    Article  ADS  Google Scholar 

  74. J. Yan, E.A. Henriksen, P. Kim, A. Pinczuk, Phys. Rev. Lett. 101, 136804 (2008)

    Article  ADS  Google Scholar 

  75. L.M. Malard, D.C. Elias, E.S. Alves, M.A. Pimenta, Phys. Rev. Lett. 101, 257401 (2008)

    Article  ADS  Google Scholar 

  76. T. Ando, J. Phys. Soc. Jpn. 75, 124701 (2006)

    Article  ADS  Google Scholar 

  77. L.G. Cançado, A. Hartschuh, L. Novotny, J. Raman Spectrosc. 40, 1420 (2009)

    Article  ADS  Google Scholar 

  78. L. Novotny B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  79. N. Anderson, A. Hartschuh, L. Novotny, Mater. Today 8(5), 50 (2005)

    Article  Google Scholar 

  80. A. Hartschuh, Angew. Chem. Int. Ed. 47, 8178 (2008)

    Article  Google Scholar 

  81. T. Yano, Y. Inouye, S. Kawata, Nano Lett. 6(6), 1269 (2006)

    Article  ADS  Google Scholar 

  82. T. Yano, P. Verma, S. Kawata, Y. Inouye, Appl. Phys. Lett. 88, 093125 (2006)

    Article  ADS  Google Scholar 

  83. S.S. Kharintsev, G.G. Hoffmann, P.S. Dorozhkin, G.de With, J. Loos, Nanotechnology 18, 315502 (2007)

    Google Scholar 

  84. A. Hartschuh, E.J. Sánchez, X.S. Xie, L. Novotny, Phys. Rev. Lett. 90, 095503 (2003)

    Article  ADS  Google Scholar 

  85. N. Anderson, A. Hartschuh, L. Novotny, J. Am. Chem. Soc. 127, 2533 (2005)

    Article  Google Scholar 

  86. N. Anderson, A. Hartschuh, L. Novotny, Nano Lett. 7(3), 577 (2007)

    Article  ADS  Google Scholar 

  87. I.O. Maciel, N. Anderson, M.A. Pimenta, A. Hartschuh, H. Qian, M. Terrones, H. Terrones, J. Campos-Delgado, A.M. Rao, L. Novotny, A. Jorio, Nat. Mater. 7, 878 (2008)

    Article  ADS  Google Scholar 

  88. L. Novotny S.J. Stranick, Annu. Rev. Phys. Chem. 57, 303 (2005)

    Article  ADS  Google Scholar 

  89. A. Hartschuh, M.R. Beverluis, A. Bouhelier, L. Novotny, Philos. Trans. R. Soc. London A 362, 807 (2004)

    Article  ADS  Google Scholar 

  90. L.G. Cançado, A. Jorio, A. Ismach, E. Joselevich, A. Hartschuh, L. Novotny, Phys. Rev. Lett. 103, 186101 (2009)

    Article  ADS  Google Scholar 

  91. J.S. Soares, A.P.M. Barboza, P.T. Araujo, N.M. Barbosa Neto, D. Nakabayashi, N. Shadmi, T.S. Yarden, A. Ismach, N. Geblinger, E. Joselevich, C. Vilani, L.G. Cançado, L. Novotny, G. Dresselhaus, M.S. Dresselhaus, B.R.A. Neves, M.S.C. Mazzoni, A. Jorio Nano Lett. 10(12), 5043 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AJ and LGC acknowledge MCTI-CNPq and the AFOSR/SOARD Project (Award No. FA9550-08-1-0236). MSD acknowledges NSF Grant No. DMR-10-04147. R.S. Acknowledges MEXT Grant No. 20241023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Dresselhaus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dresselhaus, M.S., Jorio, A., Cançado, L.G., Dresselhaus, G., Saito, R. (2011). Raman Spectroscopy: Characterization of Edges, Defects, and the Fermi Energy of Graphene and sp 2 Carbons. In: Raza, H. (eds) Graphene Nanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22984-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22984-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20467-8

  • Online ISBN: 978-3-642-22984-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics