Skip to main content

Electronic Structure of Bilayer Graphene Nanoribbon and Its Device Application: A Computational Study

  • Chapter
  • First Online:
Graphene Nanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

Abstract

Two-dimensional monolayer graphene has the unique electrical and physical properties which can be exploited in new device structures. However, its application in field-effect device structure is limited due to its semi-metal nature. Therefore, a lot of research efforts have been focussed on introducing an energy bandgap in the electronic structure. For example, a commonly studied method involves cutting two-dimensional graphene into one-dimensional narrow ribbons (graphene nanoribbons), where the spatial quantum confinement introduced by the physical edges generates an energy bandgap that is closely related to the width and edge configurations of the ribbon. Similarly for a bilayer graphene, an energy bandgap can also be obtained like the monolayer graphene nanoribbons, and be further controlled by varying its interlayer distance. In this chapter, a review of the electronic structure of monolayer graphene nanoribbon is presented and the study on the bilayer counterpart is subsequently discussed. Furthermore, based on the electrical properties of the bilayer graphene nanoribbon, the device performance of the Schottky barrier diode is investigated. Lastly, a nanoelectromechanical (NEM) switch based on the floating gate design is presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Process Integration, Devices, and Structures, in International Technology Roadmap for Semiconductors (ITRS), 2009 edition. Link: http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_PIDS.pdf. (Online)

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  4. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  5. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006)

    Article  ADS  Google Scholar 

  6. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, J. Phys. Chem. B 108, 11912 (2004)

    Google Scholar 

  7. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  8. M.C. Lemme, T.J. Echtermeyer, M. Baus, H. Kurz, IEEE Elec. Dev. Lett. 28, 282 (2007)

    Article  ADS  Google Scholar 

  9. J. Kedzierski, P.-L. Hsu, P. Healey, P.W. Wyatt, C.L. Keast, M. Sprinkle, C. Berger, W.A. de Heer, IEEE Trans. Elec. Dev. 55, 2078 (2008)

    Article  ADS  Google Scholar 

  10. Y.-M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill, Ph. Avouris, Science 327, 662 (2010)

    Article  ADS  Google Scholar 

  11. L. Liao, J. Bai, Y. Qu, Y.-C. Lin, Y. Li, Y. Huang, X. Duan, Proc. Natl. Acad. Sci. USA 107, 6711 (2010)

    Article  ADS  Google Scholar 

  12. F. Schwierz, Nat. Nanotechnol. 5, 487 (2010)

    Article  ADS  Google Scholar 

  13. S.B. Trickey, F. Müller-Plathe, G.H.F. Diercksen, Phys. Rev. B 45, 4460 (1992)

    Article  ADS  Google Scholar 

  14. E. McCann, V.I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006)

    Google Scholar 

  15. E. McCann, Phys. Rev. B. 74, 161403 (2006)

    Article  ADS  Google Scholar 

  16. Y. Ouyang, P. Campbell, J. Guo, Appl. Phys. Lett. 92, 063120 (2008)

    Article  ADS  Google Scholar 

  17. J. Nilsson, A.H. Castro Neto, F. Guinea, N.M.R. Peres, Phys. Rev. B 76, 165416 (2007)

    Article  ADS  Google Scholar 

  18. G. Fiori, G. Iannaccone, IEEE Elec. Dev. Lett. 30, 1096 (2009)

    Article  ADS  Google Scholar 

  19. M. Cheli, G. Fiori, G. Iannaccone, IEEE Trans. Elec. Dev. 56, 2979 (2010)

    Article  ADS  Google Scholar 

  20. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, A.H. Castro Neto, Phys. Rev. Lett. 99, 216802 (2007)

    Article  ADS  Google Scholar 

  21. L.M. Zhang, Z.Q. Li, D.N. Basov, M.M. Fogler, Z. Hao, M.C. Martin, Phys. Rev. B 78, 235408 (2008)

    Article  ADS  Google Scholar 

  22. Z.Q. Li, E.A. Henriksen, Z. Jiang, Z. Hao, M.C. Martin, P. Kim, H.L. Stormer, D.N. Basov, Phys. Rev. Lett. 102, 037403 (2009)

    Article  ADS  Google Scholar 

  23. Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009)

    Article  ADS  Google Scholar 

  24. M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996)

    Article  ADS  Google Scholar 

  25. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  26. K. Wakabayashi, M. Fujita, H. Ajiki, M. Sigrist, Phys. Rev. B 59, 8271 (1999)

    Article  ADS  Google Scholar 

  27. M. Ezawa, Phys. Rev. B 73, 045432 (2006)

    Article  ADS  Google Scholar 

  28. Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  29. B. Obradovic, R. Kotlyar, F. Heinz, P. Matagne, T. Rakshit, M.D. Giles, M.A. Stettler, D.E. Nikonov, Appl. Phys. Lett. 88, 142102 (2006)

    Article  ADS  Google Scholar 

  30. G. Liang, N. Neophytou, M.S. Lundstrom, D.E. Nikonov, J. Appl. Phys. 102, 054307 (2007)

    Article  ADS  Google Scholar 

  31. G. Liang, N. Neophytou, M.S. Lundstrom, D.E. Nikonov, Nano Lett. 8, 1819 (2008)

    Article  ADS  Google Scholar 

  32. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 (2008)

    Article  ADS  Google Scholar 

  33. H. Teong, K.-T. Lam, S.B. Khalid, G. Liang, J. Appl. Phys. 105, 084317 (2009)

    Article  ADS  Google Scholar 

  34. Z.F. Wang, Q.W. Shi, Q. Li, X. Wang, J.G. Hou, H. Zheng, Y. Yao, J. Chen, Appl. Phys. Lett. 91, 053109 (2007)

    Article  ADS  Google Scholar 

  35. M.P. Lima, A. Fazzio, A.J.R. da Silva, Phys. Rev. B 79, 153401 (2009)

    Article  ADS  Google Scholar 

  36. J.-W. Rhim, K. Moon, J. Phys.: Condens. Matter 20, 365202 (2008)

    Google Scholar 

  37. N. Xu, J.W. Ding, J. Phys.: Condens. Matter 20, 485213 (2008)

    Google Scholar 

  38. H. Xu, T. Heinzel, Phys. Rev. B 80, 045308 (2009)

    Article  ADS  Google Scholar 

  39. B.N. Szafranek, D. Schall, M. Otto, D. Neumaier, H. Kurz, Appl. Phys. Lett. 96, 112103 (2010)

    Article  ADS  Google Scholar 

  40. B. Sahu, H. Min, A.H. MacDonald, S.K. Banerjee, Phys. Rev. B 78, 045404 (2008)

    Article  ADS  Google Scholar 

  41. T.S. Lin, Y.C. Huang, S.C. Chang, Y.C. Chuang, M.F. Lin, Eur. Phys. J. B 64, 73 (2008)

    Article  ADS  Google Scholar 

  42. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009)

    Article  ADS  Google Scholar 

  43. N.L. Rangel, J.C. Sotelo, J.M. Seminario, J. Chem. Phys. 131, 031105 (2009)

    Article  ADS  Google Scholar 

  44. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458, 877 (2009)

    Article  ADS  Google Scholar 

  45. L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai, Nat. Nanotechnol. 5, 321 (2010)

    Article  ADS  Google Scholar 

  46. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  ADS  Google Scholar 

  47. M. Brandbyge, J.-L. Mozos, P. Ordejón, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  ADS  Google Scholar 

  48. J.M. Soler, E. Artacho, J.D. Gale, A. Gracia, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys: Cond. Matt. 14, 2745 (2002)

    Article  ADS  Google Scholar 

  49. M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986)

    Article  ADS  Google Scholar 

  50. T. Miyake, S. Saito, Phys. Rev. B 68, 155424 (2003)

    Article  ADS  Google Scholar 

  51. T. Miyake, S. Saito, Phys. Rev. B 72, 073404 (2005)

    Article  ADS  Google Scholar 

  52. L. Yang, C.-H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 99, 186801 (2007)

    Article  ADS  Google Scholar 

  53. K.-T. Lam, G. Liang, Appl. Phys. Lett. 92, 223106 (2008)

    Article  ADS  Google Scholar 

  54. S. Datta, in Quantum Transport: Atom to Transistor (Cambridge University Press, New York, 2005)

    Google Scholar 

  55. X. Guan, M. Zhang, Z. Yu, IEEE Elec. Dev. Lett. 29, 759 (2008)

    Article  ADS  Google Scholar 

  56. L. Brey, H. A. Fertig, Phys. Rev. B 73, 195408 (2006)

    Article  ADS  Google Scholar 

  57. M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996)

    Article  ADS  Google Scholar 

  58. S.D. Dalosto, Z.H. Levine, J. Phys. Chem. C, 112, 8196 (2008)

    Article  Google Scholar 

  59. R. Peköz, Ş. Erkoç, Phys. E: Low Dimens. Syst. Nanostruct. 42, 110 (2009)

    Article  ADS  Google Scholar 

  60. A.H. Castro Neto, F. Guinea, N.M.R. Peres, Phys. Rev. B 73, 205408 (2006)

    Article  ADS  Google Scholar 

  61. X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, H. Dai, Science 324, 768 (2009)

    Article  ADS  Google Scholar 

  62. B. Huang, Q. Yan, G. Zhou, J. Wu, B.-L. Gu, W. Duan, F. Liu, Appl. Phys. Lett. 91, 253122 (2007)

    Article  ADS  Google Scholar 

  63. S. Latil, V. Meunier, L. Henrard, Phys. Rev. B 76, 201402 (2007)

    Article  ADS  Google Scholar 

  64. M.-H. Bao, in Micro Mechanical Transducers: Pressure Sensors, Accelerometers and Gyroscopes (Elsevier, Amsterdam, 2000)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial supports of the Science and Engineering Research Council of the Agency for Science, Technology and Research, Singapore, under the fund No. 082-101-0023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengchiau Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lam, KT., Liang, G. (2011). Electronic Structure of Bilayer Graphene Nanoribbon and Its Device Application: A Computational Study. In: Raza, H. (eds) Graphene Nanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22984-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22984-8_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20467-8

  • Online ISBN: 978-3-642-22984-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics