Skip to main content

Graphene Oxide: Synthesis, Characterization, Electronic Structure, and Applications

  • Chapter
  • First Online:
Graphene Nanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

Abstract

While graphite oxide was first identified in 1855 [1, 2], the recent discovery of stable graphene sheets has led to renewed interest in the chemical structure and potential applications of graphene oxide sheets. These structures have several physical properties that could aid in the large scale development of a graphene electronics industry. Depending on the degree of oxidization, graphene oxide layers can be either semiconducting or insulating and provide an important complement to metallic graphene layers. In addition, the electronic and optical properties of these films can be controlled by the selective removal or addition of oxygen. For example, selective oxidationof graphene sheets could lead to electronic circuit fabrication on the scale of a single atomic layer. Graphene oxide is also dispersible in water and other solvents and this provides a facile route for graphene deposition on a wide range of substrates for macroelectronics applications. Although graphite oxide has been known for roughly 150 years, key questions remain in regards to its chemical structure, electronic properties, and fabrication. Answering these issues has taken on special urgency with the development of graphene electronics. In this chapter, we will provide an overview of the field with special focus on synthesis, characterization, and first principles analysis of bonding and electronic structures. Finally, we will also address some of the most promising applications for graphene oxide in electronics and other industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.C. Brodie, Ann. Chim. Phys. 45, 351 (1855)

    Google Scholar 

  2. B.C. Brodie, Phil. Trans. R. Soc. Lond. 149, 249 (1859)

    Article  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  4. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  5. M.Y. Han, B. Ozyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  6. Y. Zhang, T.T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Nature 459, 820 (2009)

    Article  ADS  Google Scholar 

  7. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, P.M. Ajayan, Nat. Mater. 9, 430 (2010)

    Article  ADS  Google Scholar 

  8. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006)

    Article  ADS  Google Scholar 

  9. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff, Science 324, 1312 (2009)

    Article  ADS  Google Scholar 

  10. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi, B.H. Hong, Nature 457, 706 (2009)

    Article  ADS  Google Scholar 

  11. A. Lerf, H. He, M. Forster, J. Klinowski, J. Phys. Chem. B 102, 4477 (1998)

    Article  Google Scholar 

  12. D.R. Dreyer, S. Park, C.W. Bielawski, R.S. Ruoff, Chem. Soc. Rev. 39, 228 (2010)

    Article  Google Scholar 

  13. O.C. Compton, S.T. Nguyen, Small 6, 711 (2010)

    Article  Google Scholar 

  14. U. Hofmann, R. Holst, Ber. Dtsch. Chem. Ges. B 72, 754 (1939)

    Article  Google Scholar 

  15. G. Ruess, Monatsh. Chem 76, 381 (1946)

    Article  Google Scholar 

  16. T. Nakajima, A. Mabuchi, R. Hagiwara, Carbon 26, 357 (1988)

    Article  Google Scholar 

  17. D. Pandey, R. Reifenberger, R. Piner, Surf. Sci. 602, 1607 (2008)

    Article  ADS  Google Scholar 

  18. T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis, I. Dekany, Chem. Mater. 18, 2740 (2006)

    Article  Google Scholar 

  19. W. Gao, L.B. Alemany, L. Ci, P.M. Ajayan, Nature Chem. 1, 403 (2009)

    Article  ADS  Google Scholar 

  20. L. Staudenmaier, Ber. Dtsch. Chem. Ges. 31, 1481 (1898)

    Article  Google Scholar 

  21. W.S. Hummers, U.S. Patent 2,798,878, 1957

    Google Scholar 

  22. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  23. N.I. Kovtyukhova, P.J. Ollivier, B.R. Martin, T.E. Mallouk, S.A. Chizhik, E.V. Buzaneva, A.D. Gorchinsky, Chem. Mater. 11, 771 (1999)

    Article  Google Scholar 

  24. M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, M. Ohba, Carbon 42, 2929 (2004)

    Google Scholar 

  25. J.A. Johnson, C.J. Benmore, S. Stankovich, R.S. Ruoff, Carbon 47, 2239 (2009)

    Article  Google Scholar 

  26. C. Petit, M. Seredych, T.J. Bandosz, J. Mater. Chem. 19, 9176 (2009)

    Article  Google Scholar 

  27. H.P. Boehm, W. Scholz, Justus Liebigs Ann. Chem. 691, 1 (1965)

    Article  Google Scholar 

  28. H.K. Jeong, Y.P. Lee, R.J.W.E. Lahaye, M.H. Park, K.H. An, I.J. Kim, C.W. Yang, C.Y. Park, R.S. Ruoff, Y.H. Lee, J. Am. Chem. Soc. 130, 1362 (2008)

    Article  Google Scholar 

  29. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano 4, 4806 (2010)

    Article  Google Scholar 

  30. Z. Luo, Y. Lu, L.A. Somers, A.T.C. Johnson, J. Am. Chem. Soc. 131, 898 (2009)

    Article  Google Scholar 

  31. S. Stankovich, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Carbon 44, 3342 (2006)

    Article  Google Scholar 

  32. H.P. Boehm, A. Clauss, G.O. Fischer, U. Hofmann, Z. Naturforschung 17b, 150 (1962)

    Google Scholar 

  33. J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, J. Huang, J. Am Chem. Soc. 132, 8180 (2010)

    Article  Google Scholar 

  34. X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, W.A. de Heer, Phys. Rev. Lett. 101, 026801 (2008)

    Article  ADS  Google Scholar 

  35. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009)

    Article  ADS  Google Scholar 

  36. A.L. Higginbotham, D.V. Kosynkin, A. Sinitskii, Z. Sun, J.M. Tour, ACS Nano 4, 2059 (2010)

    Article  Google Scholar 

  37. Z. Wei, D. Wang, S. Kim, S.Y. Kim, Y. Hu, M.K. Yakes, A.R. Laracuente, Z. Dai, S.R. Marder, C. Berger, W.P. King, W.A. de Heer, P.E. Sheenan, E. Riedo, Science 328, 1373 (2010)

    Article  ADS  Google Scholar 

  38. H.C. Schnieep, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud’homme, R. Car, D.A. Saville, I.A. Aksay, J. Phys. Chem. B 110, 8535 (2006)

    Google Scholar 

  39. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguygen, R.S. Ruoff, Carbon 45, 1558 (2007)

    Article  Google Scholar 

  40. R. Ishikawa, M. Bando, Y. Morimoto, S.Y. Park, A. Sandhu, Jpn. J. Appl. Phys. 49, 06GC02 (2010)

    Google Scholar 

  41. G. Eda, G. Fanchini, M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008)

    Article  Google Scholar 

  42. G.K. Ramesha, S. Sampath, J. Phys. Chem. C 113, 7985 (2009)

    Article  Google Scholar 

  43. G. Williams, B. Seger, P.V. Kamat, ACS Nano 2, 1487 (2008)

    Article  Google Scholar 

  44. L.J. Cote, R. Cruz-Silva, J. Huang, J. Am. Chem. Soc. 131, 11027 (2009)

    Article  Google Scholar 

  45. E.C. Salas, Z. Sun, A. Luttge, J.M. Tour, ACS Nano 4, 4852 (2010)

    Article  Google Scholar 

  46. X. Gao, J. Jang, S. Nagase, J. Phys. Chem. C 114, 832 (2010)

    Article  Google Scholar 

  47. V.C. Tung, M.J. Allen, Y. Yang, R.B. Kaner, Nat. Nanotech. 4, 29 (2009)

    Article  ADS  Google Scholar 

  48. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice, R.S. Ruoff, Carbon 47, 145 (2009)

    Article  Google Scholar 

  49. D. Ogrin, J. Chattopadhyay, A.K. Sadana, W.E. Billups, A.R. Barron, J. Am. Chem. Soc. 128, 11322 (2006)

    Article  Google Scholar 

  50. J. Chattopadhyay, A. Mukherjee, C.E. Hamilton, J. Kang, S. Chakraborty, W. Guo, K.F. Kelly, A.R. Barron, W.E. Billups, J. Am. Chem. Soc. 130, 5414 (2008)

    Article  Google Scholar 

  51. A. Bagri, R. Grantab, N.V. Medhekar, V.B. Shenoy, J. Phys. Chem. C 114, 12053 (2010)

    Article  Google Scholar 

  52. A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, V.B. Shenoy, Nat. Chem. 2, 581 (2010)

    Article  Google Scholar 

  53. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, J. Phys. Chem. A 105, 9396 (2001)

    Article  Google Scholar 

  54. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Science 320, 1308 (2008)

    Article  ADS  Google Scholar 

  55. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005)

    Article  ADS  Google Scholar 

  56. I. Jung, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, R.S. Ruoff, Nano Lett. 7, 3569 (2007)

    Article  ADS  Google Scholar 

  57. S. Roddaro, P. Pingue, V. Piazza, V. Pellegrini, F. Beltram, Nano Lett. 7, 2707 (2007)

    Article  ADS  Google Scholar 

  58. J. Kim, F. Kim, J. Huang, Mater. Today 13, 28 (2010)

    Article  Google Scholar 

  59. S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Nature 442, 282 (2006)

    Article  ADS  Google Scholar 

  60. N.R. Wilson, P.A. Pandey, R. Beanland, R.J. Young, I.A. Kinloch, L. Gong, Z. Liu, K. Suenaga, J.P. Rourke, S.J. York, J. Sloan, ACS Nano 3, 2547 (2009)

    Article  Google Scholar 

  61. L. Reimer, H. Kohl, Transmission Electron Microscope: Physics of Image Formation, 5th edn. (Springer, Berlin, Heidelberg, New York, 2008)

    Google Scholar 

  62. C. Gomez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Nano Lett. 10, 1144 (2010)

    Article  ADS  Google Scholar 

  63. A.V. Crewe, J. Wall, J. Langmore, Science 168, 1338 (1970)

    Article  ADS  Google Scholar 

  64. P.E. Batson, N. Dellby, O.L. Krivanek, Nature 418, 617 (2002)

    Article  ADS  Google Scholar 

  65. P.D. Nellist, M.F. Chisholm, N. Dellby, O.L. Krivanek, M.F. Murfitt, Z.S. Szilagyi, A.R. Lupini, A. Borisevich, J.W.H. Sides, S.J. Pennycook, Science 305, 1741 (2004)

    Article  Google Scholar 

  66. K.A. Mkhoyan, P.E. Batson, J. Cha, W.J. Schaff, J. Silcox, Science 312, 1354 (2006)

    Article  Google Scholar 

  67. P.M. Voyles, D.A. Muller, J.L. Grazul, P.H. Citrin, H.J.L. Gossmann, Nature 416, 826 (2002)

    Article  ADS  Google Scholar 

  68. E. Abe, S.J. Pennycook, A.P. Tsai, Nature 421, 347 (2003)

    Article  ADS  Google Scholar 

  69. M.H. Gass, U. Bangert, A.L. Bleloch, P. Wang, R.R. Nair, A.K. Geim, Nat. Nanotechnol. 3, 676 (2008)

    Article  ADS  Google Scholar 

  70. T. Eberlein, U. Bangert, R.R. Nair, R. Jones, M. Gass, A.L. Bleloch, K.S. Novoselov, A. Geim, P.R. Briddon, Phys. Rev. B 77, 233406 (2008)

    Article  ADS  Google Scholar 

  71. K.A. Mkhoyan, A.W. Contryman, J. Silcox, D.A. Stewart, G. Eda, C. Mattevi, S. Miller, M. Chhowalla, Nano Lett. 9, 1058 (2009)

    Article  ADS  Google Scholar 

  72. E.J. Kirkland, Advanced Computing in Electron Microscopy (Plenum Press, NY, USA, 1998)

    Google Scholar 

  73. R.F. Egerton, Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd edn. (Plenum Press, NY, USA, 1996)

    Google Scholar 

  74. D.A. Muller, D.J. Singh, J. Silcox, Phys. Rev. B 57, 8181 (1998)

    Article  ADS  Google Scholar 

  75. K.A. Mkhoyan, J. Silcox, E.S. Alldredge, N.W. Ashcroft, H. Lu, W.J. Schaff, L.F. Eastman, Appl. Phys. Lett. 82, 1407 (2003)

    Article  ADS  Google Scholar 

  76. G. Binnig, C.F. Quate, C. Gerber, Phys. Rev. Lett. 56, 930 (1986)

    Article  ADS  Google Scholar 

  77. F.J. Giessibl, Science 267, 68 (1995)

    Article  ADS  Google Scholar 

  78. S. Morita, R. Wiesendanger, E. Meyer, Noncontact Atomic Force Microscopy, 1st edn. (Springer, Berlin, Heidelberg, New York, 2002)

    Book  Google Scholar 

  79. F.J. Giessibl, Rev. Mod. Phys. 75, 949 (2003)

    Article  ADS  Google Scholar 

  80. I. Jung, M. Vaupel, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, J. An, R.S. Ruoff, J. Phys. Chem. C 112, 8499 (2008)

    Article  Google Scholar 

  81. A. Buchsteiner, A. Lerf, J. Pieper, J. Phys. Chem. B 110, 22328 (2006)

    Article  Google Scholar 

  82. G. Eda, M. Chhowalla, Nano Lett. 9, 814 (2009)

    Article  ADS  Google Scholar 

  83. S. Pang, H.N. Tsao, X. Feng, K. Mullen, Adv. Mater. 21, 3488 (2009)

    Article  Google Scholar 

  84. D. Briggs, M.P. Seah, Practical Surface Analysis, Auger and X-ray Photoelectron Spectroscopy, 2nd edn. (Wiley, NY, USA, 1996)

    Google Scholar 

  85. B.V. Crist, Handbook of Monochromatic XPS Spectra, 1st edn. (Wiley, NY, USA, 2000)

    Google Scholar 

  86. C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, M. Chhowalla, Adv. Funct. Mater. 19, 2577 (2009)

    Article  Google Scholar 

  87. C. Hontoria-Lucas, A.J.L. Peinando, J.D.D. Lopez-Gonzalez, M.L. Rojas-Cervantes, R.M. Martin-Aranda, Carbon 33, 1585 (1995)

    Article  Google Scholar 

  88. D.Q. Yang, E. Sacher, Langmuir 22, 860 (2006)

    Article  Google Scholar 

  89. D. Yang, A. Velamakanni, G. Bozoklu, S. Park, M. Stoller, R.D. Piner, S. Stankovich, I. Jung, D.A. Field, C.A. Ventrice Jr., R.S. Ruoff, Carbon 47, 145 (2008)

    Article  Google Scholar 

  90. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Phys. Rev. Lett. 97, 187401 (2006)

    Article  ADS  Google Scholar 

  91. A. Gupta, G. Chen, P. Joshi, S. Tadigada, P.C. Eklund, Nano Lett. 6, 2667 (2006)

    Article  ADS  Google Scholar 

  92. Z. Ni, Y. Wang, T. Yu, Z. Shen, Nano Res. 1, 273 (2008)

    Article  Google Scholar 

  93. F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53, 1126 (1970)

    Article  ADS  Google Scholar 

  94. C.Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.H. Tsai, L.J. Li, Chem. Mater. 21, 5674 (2009)

    Article  Google Scholar 

  95. S. Baroni, S. de Gironcoli, A.D. Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  96. K.N. Kudin, B. Ozbas, H.C. Schniepp, R.K. Prud’homme, I.A. Aksay, R. Car, Nano Lett. 8, 36 (2008)

    Google Scholar 

  97. J.L. Li, K.N. Kudin, M.J. McAllister, R.K. Prud’homme, I.A. Aksay, R. Car, Phys. Rev. Lett. 96, 176101 (2006)

    Google Scholar 

  98. Z.S. Wu, W. Ren, L. Gao, B. Liu, J. Zhao, H.M. Cheng, Nano Res. 3, 16 (2010)

    Article  Google Scholar 

  99. Z. Li, W. Zhang, Y. Luo, J. Yang, J.G. Hou, J. Am. Chem. Soc. 131, 6320 (2009)

    Article  Google Scholar 

  100. J.A. Yan, L. Xian, M.Y. Chou, Phys. Rev. Lett. 103, 086802 (2009)

    Article  ADS  Google Scholar 

  101. Z. Xu, K. Xue, Nanotechnology 21, 045704 (2010)

    Article  ADS  Google Scholar 

  102. D.W. Boukhvalov, M.I. Katsnelson, J. Am. Chem. Soc. 130, 10697 (2008)

    Article  Google Scholar 

  103. J.T. Paci, T. Belytschko, G.C. Schatz, J. Phys. Chem. 111, 18099 (2007)

    Google Scholar 

  104. H.K. Jeong, M.H. Jin, K.P. So, S.C. Lim, Y.H. Lee, J. Phys. D: Appl. Phys. 42, 065418 (2009)

    Article  ADS  Google Scholar 

  105. Z. Luo, P.M. Vora, E.J. Mele, A.T.C. Johnson, J.M. Kikkawa, Appl. Phys. Lett. 94, 111909 (2009)

    Article  ADS  Google Scholar 

  106. G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Adv. Mater. 22, 505 (2010)

    Article  Google Scholar 

  107. J. Ito, J. Nakamura, A. Natori, J. Appl. Phys. 103, 113712 (2008)

    Article  ADS  Google Scholar 

  108. A.B. Kaiser, C. Gomez-Navarro, R.S. Sundaram, M. Burghard, K. Kern, Nano Lett. 9, 1787 (2009)

    Article  ADS  Google Scholar 

  109. G. Eda, C. Mattevi, H. Yamaguchi, H.K. Kim, M. Chhowalla, J. Phys. Chem. C 113, 15768 (2009)

    Article  Google Scholar 

  110. G. Eda, M. Chhowalla, Adv. Mater. 22, 2392 (2010)

    Article  Google Scholar 

  111. C. Gomez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, K. Kern, Nano Lett. 7, 3499 (2007)

    Article  ADS  Google Scholar 

  112. T. Kobayashi, N. Kimura, J. Chi, S. Hirata, D. Hobara, Small 6, 1210 (2010)

    Article  Google Scholar 

  113. D. Joung, A. Chunder, L. Zhai, S.I. Khondaker, Nanotechnology 21, 165202 (2010)

    Article  ADS  Google Scholar 

  114. H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.S. Jung, M.H. Jin, H.K. Jeong, J.M. Kim, J.Y. Choi, Y.H. Lee, Adv. Funct. Mater. 19, 1987 (2009)

    Article  Google Scholar 

  115. S. Wang, P.J. Chia, L.L. Chua, L.H. Zhao, R.Q. Png, S. Sivaramakrishnan, M. Zhou, R.G.S. Goh, R.H. Friend, A.T.S. Wee, P.K.H. Ho, Adv. Mater. 20, 3440 (2008)

    Article  Google Scholar 

  116. S. Watcharotone, D.A. Dikin, S. Stankovich, R. Piner, I. Jung, G.H.B. Dommett, G. Evmenenko, S.E. Wu, S.F. Chen, C.P. Liu, S.T. Nguygen, R.S. Ruoff, Nano Lett. 7, 1888 (2007)

    Article  ADS  Google Scholar 

  117. S.S. Li, K.H. Tu, C.C. Lin, C.W. Chen, M. Chhowalla, ACS Nano 4, 3169 (2010)

    Article  Google Scholar 

  118. V. Shrotriya, G. Li, Y. Yao, C.W. Chu, Y. Yang, Appl. Phys. Lett. 88, 073508 (2006)

    Article  ADS  Google Scholar 

  119. M.D. Irwin, D.B. Buchholz, A.W. Bains, R.P.H. Chang, T.J. Marks, Proc. Natl. Acad. Sci. USA 105, 2783 (2008)

    Article  ADS  Google Scholar 

  120. S. Wang, J. Pu, D.S.H. Chan, B.J. Cho, K.P. Loh, Appl. Phys. Lett. 96, 143109 (2010)

    Article  ADS  Google Scholar 

  121. X.B. Lu, J.Y. Dai, Appl. Phys. Lett. 88, 113104 (2006)

    Article  ADS  Google Scholar 

  122. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845 (2008)

    Article  ADS  Google Scholar 

  123. Y. Zhu, M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner, D. Chen, R.S. Ruoff, ACS Nano 4, 1227 (2010)

    Article  Google Scholar 

  124. Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, R.S. Ruoff, Carbon 48, 2118 (2010)

    Article  Google Scholar 

  125. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Adv. Mater. (2010)

    Google Scholar 

  126. Y. Liu, D. Yu, C. Zeng, Z. Miao, L. Dai, Langmuir 26, 6158 (2010)

    Article  Google Scholar 

  127. J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, P.E. Sheenan, Nano Lett. 8, 3137 (2008)

    Article  ADS  Google Scholar 

  128. O.V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010)

    Article  ADS  Google Scholar 

  129. T.L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Schaff, V. Dadydov, L.S. Kashevarova, A.V. Rakhmanina, Nature 413, 716 (2001)

    Article  ADS  Google Scholar 

  130. T.L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Schaff, V. Dadydov, L.S. Kashevarova, A.V. Rakhmanina, Nature 440, 707 (2006)

    Article  ADS  Google Scholar 

  131. P. Esquinazi, D. Spemann, R. Hohne, A. Setzer, K.H. Han, T. Butz, Phys. Rev. Lett. 91, 227201 (2003)

    Article  ADS  Google Scholar 

  132. Y. Kopelevich, P. Esquinazi, J.H.S. Torres, S. Moehlecke, J. Low Temp. Phys. 119, 691 (2000)

    Article  Google Scholar 

  133. M. Wang, C.M. Li, New J. of Phys. 12, 083040 (2010)

    Article  ADS  Google Scholar 

  134. Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006a)

    Article  ADS  Google Scholar 

  135. Y.W. Son, M.L. Cohen, S. Louie, Nature 444, 347 (2006b)

    Article  ADS  Google Scholar 

  136. S.S. Rao, A. Stesmans, D.V. Kosynkin, A. Higginbotham, J.M. Tour, Arxiv 1006.4942, v1 (2010)

    Google Scholar 

Download references

Acknowledgements

D.A.S. gratefully acknowledges support through the National Science Foundation for the National Nanostructure Infrastructure Network (NNIN) and the Cornell Nanoscale Science and Technology Facility. A portion of the density functional calculations discussed in this chapter were calculated using the Intel Cluster at the Cornell Nanoscale Facility. K. A. M. acknowledges partial financial support from the Abu Dhabi-Minnesota Institute for Research Excellence (AD-MIRE); a partnership between the Petroleum Institute of Abu Dhabi and the Department of Chemical Engineering and Materials Science of the University of Minnesota. The authors also thank collaborators Prof. M. Chhowalla, Dr. C. Mattevi at Rutgers University and Prof. J. Silcox, Prof. S. Tiwari at Cornell University for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Derek A. Stewart or K. Andre Mkhoyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stewart, D.A., Mkhoyan, K.A. (2011). Graphene Oxide: Synthesis, Characterization, Electronic Structure, and Applications. In: Raza, H. (eds) Graphene Nanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22984-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22984-8_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20467-8

  • Online ISBN: 978-3-642-22984-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics