Skip to main content

Exploring Quantum Transport in Graphene Ribbons with Lattice Defects and Adsorbates

  • Chapter
  • First Online:
Graphene Nanoelectronics

Part of the book series: NanoScience and Technology ((NANO))

  • 5302 Accesses

Abstract

The reader is introduced to the Landauer theory of quantum transport in the context of graphene nanoribbons as well as to the geometries and electronic structures of and ballistic quantum transport in ideal ribbons. Imperfections present in ribbons that are realized in the laboratory, including carbon atom vacancies, edge disorder, long-ranged defect potentials and covalently bonded adsorbates including H, F, O, and OH and their roles in quantum transport in the ribbons are then considered. Quantum transport simulations for ribbons with these defects show that carbon atom vacancies and adsorbates can give rise to quantized conductance steps such as those observed experimentally in samples with conductances much smaller than the conductance quantum 2e 2h. Adsorbate-induced scattering resonances in graphene are discussed from the perspective of extended Hückel-based tight binding models and T-matrix theory and the effects of the adsorbate-induced rehybridization of the graphene from sp 2 to sp 3 bonding on these resonances are examined. Transport gaps are shown to open in the conductances of graphene ribbons with adsorbed H, F, O, and OH for electron Fermi energies in the vicinities of these resonances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Very recently S. Ihnatsenka and G. Kirczenow have demonstrated similar ballistic conductance quantization theoretically in a tight binding model of graphene constrictions with mesoscopically smooth but atomically stepped boundaries by means of million-atom quantum transport calculations.

  2. 2.

    A bottom-up method of fabricating very narrow graphene ribbons by self-assembly has been demonstrated [16] but transport measurements on the ribbons produced in this way have not as yet been reported.

  3. 3.

    In general the EMOs ψα are not orthogonal to the 2p z orbitals ϕ j of carbon atom(s) to which the adsorbate bonds. We allow for this in our T-matrix calculations [55] by making the substitution γαj  → γαj  − εσαj where σαj  = ⟨ψα | ϕ j ⟩ as is discussed in [126127].

  4. 4.

    For the relationship between the Fermi energy and experimental gate voltages see Fig. 13.9.

References

  1. M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim, Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  2. Z. Chen, Y.-M. Lin, M.J. Rooks, Ph. Avouris, Physica E 40, 228 (2007)

    Article  ADS  Google Scholar 

  3. Yu-Ming Lin, V. Perebeinos, Z. Chen, Ph. Avouris, Phys. Rev. B 78, 161409(R) (2008)

    Google Scholar 

  4. X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229 (2008)

    Article  ADS  Google Scholar 

  5. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Phys. Rev. Lett. 100, 206803 (2008)

    Article  ADS  Google Scholar 

  6. F. Molitor, A. Jacobsen, C. Stampfer, J. Güttinger, T. Ihn, K. Ensslin, Phys. Rev. B 79, 075426 (2009)

    Article  ADS  Google Scholar 

  7. C. Stampfer, J. Güttinger, S. Hellmüller, F. Molitor, K. Ensslin, T. Ihn, Phys. Rev. Lett. 102, 056403 (2009)

    Article  ADS  Google Scholar 

  8. P. Koskinen, S. Malola, H. Häkkinen, Phys. Rev. B 80, 073401 (2009)

    Article  ADS  Google Scholar 

  9. L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458, 87 (2009)

    Article  Google Scholar 

  10. K. Todd, H.-T. Chou, S. Amasha, D. Goldhaber-Gordon, Nano Lett. 9, 416 (2009)

    Article  ADS  Google Scholar 

  11. D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour, Nature 458, 872 (2009)

    Article  ADS  Google Scholar 

  12. M.Y. Han, J.C. Brant, P. Kim, Phys. Rev. Lett. 104, 056801 (2010)

    Article  ADS  Google Scholar 

  13. P. Gallagher, K. Todd, D. Goldhaber-Gordon, Phys. Rev. B 81, 115409 (2010)

    Article  ADS  Google Scholar 

  14. J.B. Oostinga, B. Sacépé, M.F. Craciun, A.F. Morpurgo, Phys. Rev. B 81, 193408 (2010)

    Article  ADS  Google Scholar 

  15. L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai, Nat. Nanotechnol. 5, 321 (2010)

    Article  ADS  Google Scholar 

  16. J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Müllen, R. Fasel, Nature 466, 470 (2010)

    Article  ADS  Google Scholar 

  17. C. Lian, K. Tahy, T. Fang, G. Li, H.G. Xing, D. Jena, Appl. Phys. Lett. 96, 103109 (2010)

    Article  ADS  Google Scholar 

  18. J.-M. Poumirol, A. Cresti, S. Roche, W. Escoffier, M. Goiran, X. Wang, X. Li, H. Dai, B. Raquet, Phys. Rev. B 82, 041413(R) (2010)

    Google Scholar 

  19. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 54, 17954 (1996)

    Article  ADS  Google Scholar 

  20. K. Wakabayashi, Phys. Rev. B 64, 125428 (2001)

    Article  ADS  Google Scholar 

  21. T. Hikihara, X. Hu, H.-H. Lin, C.-Y. Mou, Phys. Rev. B 68, 035432 (2003)

    Article  ADS  Google Scholar 

  22. H. Lee, Y.-W. Son, N. Park, S. Han, J. Yu, Phys. Rev. B 72, 174431 (2005)

    Article  ADS  Google Scholar 

  23. Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  24. Y.-W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006)

    Article  ADS  Google Scholar 

  25. L. Brey, H.A. Fertig, Phys. Rev. B 73, 235411 (2006)

    Article  ADS  Google Scholar 

  26. N.M.R. Peres, A.H. Castro Neto, F. Guinea, Phys. Rev. B 73, 195411 (2006); Phys. Rev. B 73, 239902 (2006)

    Google Scholar 

  27. V. Barone, O. Hod, G.E. Scuseria, Nano Lett. 6, 2748 (2006)

    Article  ADS  Google Scholar 

  28. D. Areshkin, D. Gunlycke, C.T. White, Nano Lett. 7, 204 (2007)

    Article  ADS  Google Scholar 

  29. D. Gunlyckea, D.A. Areshkin, C.T. Whiteb, Appl. Phys. Lett. 90, 142104 (2007)

    Article  ADS  Google Scholar 

  30. F. Sols, F. Guinea, A.H. Castro Neto, Phys. Rev. Lett. 99, 166803 (2007)

    Article  ADS  Google Scholar 

  31. L. Pisani, J.A. Chan, B. Montanari, N.M. Harrison, Phys. Rev. B 75, 064418 (2007)

    Article  ADS  Google Scholar 

  32. L. Yang, C.-H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 99, 186801 (2007)

    Article  ADS  Google Scholar 

  33. A. Onipko, Phys. Rev. B 78, 245412 (2008)

    Article  ADS  Google Scholar 

  34. H. Xu, T. Heinzel, M. Evaldsson, I.V. Zozoulenko, Phys. Rev. B 77, 245401 (2008)

    Article  ADS  Google Scholar 

  35. M. Evaldsson, I.V. Zozoulenko, H. Xu, T. Heinzel, Phys. Rev. B 78, 161407(R) (2008)

    Google Scholar 

  36. A. Cresti, G. Grosso, G.P. Parravicini, Phys. Rev. B 77, 233402 (2008)

    Article  ADS  Google Scholar 

  37. Z.F. Wang, Q. Li, Q.W. Shi, X. Wang, J. Yang, J.G. Hou, J. Chen, Appl. Phys. Lett. 92, 133114 (2008)

    Article  ADS  Google Scholar 

  38. M. Yamamoto, Y. Takane, K. Wakabayashi, Phys. Rev. B 79, 125421 (2009)

    Article  ADS  Google Scholar 

  39. M. Zarea, C. Büsser, N. Sandler, Phys. Rev. Lett. 101, 196804 (2008)

    Article  ADS  Google Scholar 

  40. J. Jiang, W. Lu, J. Bernholc, Phys. Rev. Lett. 101, 246803 (2008)

    Article  ADS  Google Scholar 

  41. J. Fernández-Rossier, Phys. Rev. B 77, 075430 (2008)

    Article  ADS  Google Scholar 

  42. E.R. Mucciolo, A.H. Castro Neto, C.H. Lewenkopf, Phys. Rev. B 79, 075407 (2009)

    Article  ADS  Google Scholar 

  43. S. Ihnatsenka, I.V. Zozoulenko, G. Kirczenow, Phys. Rev. B 80, 155415 (2009)

    Article  ADS  Google Scholar 

  44. S. Ihnatsenka, G. Kirczenow, Phys. Rev. B 80, 201407(R) (2009)

    Google Scholar 

  45. A. López-Bezanilla, F. Triozon, S. Roche, Nano Lett. 9, 2537 (2009)

    Article  ADS  Google Scholar 

  46. A. La Magna, I. Deretzis, G. Forte, R. Pucci, Phys. Rev. B80, 195413 (2009)

    ADS  Google Scholar 

  47. P. San-Jose, E. Prada, E. McCann, H. Schomerus, Phys. Rev. Lett. 102, 247204 (2009)

    Article  ADS  Google Scholar 

  48. Q. Ran, M. Gao, X. Guan, Y. Wang, Z. Yu, Appl. Phys. Lett. 94, 103511 (2009)

    Article  ADS  Google Scholar 

  49. H.-H. Lin, T. Hikihara, H.-T. Jeng, B.-L. Huang, Ch.-Y. Mou, Phys. Rev. B79, 035405 (2009)

    ADS  Google Scholar 

  50. J. Jung, T. Pereg-Barnea, A.H. MacDonald, Phys. Rev. Lett. 102, 227205 (2009)

    Article  ADS  Google Scholar 

  51. J. Jung, A.H. MacDonald, Phys. Rev. B80, 235417 (2009)

    ADS  Google Scholar 

  52. A.V. Rozhkov, S. Savelev, F. Nori Phys. Rev. B 79, 125420 (2009)

    Article  ADS  Google Scholar 

  53. A. Cresti, S. Roche, New J. Phys. 11, 095004 (2009)

    Article  ADS  Google Scholar 

  54. J. Jung, A.H. MacDonald, Phys. Rev. B81, 195408 (2010)

    ADS  Google Scholar 

  55. S. Ihnatsenka, G. Kirczenow, Phys. Rev. B 83, 245442 (2011)

    Article  ADS  Google Scholar 

  56. S. Ihnatsenka, G. Kirczenow, Phys. Rev. B 83, 245431 (2011)

    Article  ADS  Google Scholar 

  57. H. Cheraghchi, H. Esmailzade, Nanotechnology 21, 205306 (2010)

    Article  ADS  Google Scholar 

  58. Q. Zhang, T. Fang, H. Xing, A. Seabaugh, D. Jena, IEEE Electron Device Lett., 29, 1344 (2008)

    Article  ADS  Google Scholar 

  59. D.H. Choe, J. Bang, K.J. Chang, New J. Phys. 12, 125005 (2010)

    Article  ADS  Google Scholar 

  60. I. Deretzis, G. Fiori, G. Iannaccone, A. La Magna, Phys. Rev. B 81, 085427 (2010)

    Article  ADS  Google Scholar 

  61. I. Deretzis, G. Fiori, G. Iannaccone, A. La Magna, Phys. Rev. B 82, 161413(R) (2010)

    Google Scholar 

  62. A. Ramasubramaniam, Phys. Rev. B 81, 245413 (2010)

    Article  ADS  Google Scholar 

  63. M. Vanin, J. Gath, K.S. Thygesen, K.W. Jacobsen, Phys. Rev. B 82, 195411 (2010)

    Article  ADS  Google Scholar 

  64. A. Saffarzadeh, R. Farghadan, Appl. Phys. Lett. 98, 023106 (2011)

    Article  ADS  Google Scholar 

  65. R. Landauer, IBM J. Res. Dev. 1, 223 (1957)

    Article  MathSciNet  Google Scholar 

  66. R. Landauer, Philos. Mag. 21, 863 (1970)

    Article  ADS  Google Scholar 

  67. E.N. Economou, C.M. Soukoulis, Phys. Rev. Lett. 46, 618 (1981)

    Article  ADS  Google Scholar 

  68. D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  69. For a recent review see G. Kirczenow, The Oxford Handbook of Nanoscience and Technology, vol. 1, ed. by A.V. Narlikar, Y.Y. Fu (Oxford University Press, Oxford New York, 2010), pp. 62–116

    Google Scholar 

  70. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  ADS  Google Scholar 

  71. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  ADS  MATH  Google Scholar 

  72. A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  73. M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996)

    Article  ADS  Google Scholar 

  74. K.-I. Sasaki, R. Saito, J. Phys. Soc. Jpn. 77, 054703 (2008)

    Article  ADS  Google Scholar 

  75. O.V. Yazyev, M.I. Katsnelson, Phys. Rev. Lett. 100, 047209 (2008)

    Article  ADS  Google Scholar 

  76. S. Dutta, S. Lakshmi, S.K. Pati, Phys. Rev. B 77, 073412 (2008)

    Article  ADS  Google Scholar 

  77. S. Dutta, S.K. Pati, J. Phys. Chem. B 112, 1333 (2008)

    Article  Google Scholar 

  78. S. Dutta, A.K. Manna, S.K. Pati, Phys. Rev. Lett. 102, 096601 (2009)

    Article  ADS  Google Scholar 

  79. J. Davies, The Physics of Low-Dimensional Semiconductors (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  80. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988)

    Article  ADS  Google Scholar 

  81. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, G.A.C. Jones, J. Phys. C21, L209 (1988)

    ADS  Google Scholar 

  82. J.I. Pascual, J. Méndez, J. Gómez-Herrero, A.M. Baró, N. Garcia, Uzi Landman, W.D. Luedtke, E.N. Bogachek, H.-P. Cheng, Science 267, 1793 (1995)

    Google Scholar 

  83. J.I. Pascual, J. Méndez, J. Gómez-Herrero, A.M. Baró, N. Garcia, Vu Thien Binh, Phys. Rev. Lett. 71, 1852 (1993)

    Article  ADS  Google Scholar 

  84. S. Frank, P. Poncharal, Z.L. Wang, W.A. deHeer, Science 280, 1744 (1998)

    Google Scholar 

  85. N. Tombros, A. Veligura, J. Junesch, M.H.D. Guimarães, I.J. Vera-Marun, H.T. Jonkman, B.J. van Wees, Nat. Phys. 7, 697 (2011)

    Article  Google Scholar 

  86. M. Endo, T. Hayashi, Seong-Hwa Hong, T. Enoki, M.S. Dresselhaus, J. Appl. Phys. 90, 5670 (2001)

    Google Scholar 

  87. S. Reich, J. Maultzsch, C. Thomsen, P. Ordejón, Phys. Rev. B 66, 035412 (2002)

    Article  ADS  Google Scholar 

  88. P.A. Lee, A.D. Stone, Phys. Rev. Lett. 55, 1622 (1985)

    Article  ADS  Google Scholar 

  89. K. Nikolić, A. MacKinnon, Phys. Rev. B 50, 11008 (1994)

    Article  ADS  Google Scholar 

  90. J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J.H. Smet, K. von Klitzing, A. Yacoby, Nature Phys. 4, 144 (2008)

    Article  ADS  Google Scholar 

  91. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  92. J.W. Klos, A.A. Shylau, I.V. Zozoulenko, H. Xu, T. Heinzel, Phys. Rev. B 80, 245432 (2009)

    Article  ADS  Google Scholar 

  93. C.H. Lewenkopf, E.R. Mucciolo, A.H. Castro Neto, Phys. Rev. B 77, 081410(R) (2008)

    Google Scholar 

  94. Y.-J. Yu, Yue Zhao, S. Ryu, L.E. Brus, K.S. Kim, P. Kim, Nano Lett. 9, 3430 (2009)

    Google Scholar 

  95. D. Stojkovic, P. Zhang, P.E. Lammert, V.H. Crespi, Phys. Rev. B 68, 195406 (2003)

    Article  ADS  Google Scholar 

  96. O. Leenaerts, B. Partoens, F.M. Peeters, Appl. Phys. Lett. 92, 243125 (2008)

    Article  ADS  Google Scholar 

  97. O. Leenaerts, B. Partoens, F.M. Peeters, Phys. Rev. B 80, 245422 (2009a)

    Article  ADS  Google Scholar 

  98. O. Leenaerts, B. Partoens, F.M. Peeters, Phys. Rev. B 79, 235440 (2009b)

    Article  ADS  Google Scholar 

  99. Z.M. Ao, F.M. Peeters, J. Phys. Chem. C114, 14503 (2010a)

    Google Scholar 

  100. Z.M. Ao, F.M. Peeters, Phys. Rev. B 81, 205406 (2010b)

    Article  ADS  Google Scholar 

  101. T.O. Wehling, S. Yuan, A.I. Lichtenstein, A.K. Geim, M.I. Katsnelson, Phys. Rev. Lett. 105, 056802 (2010)

    Article  ADS  Google Scholar 

  102. Yu. V. Skrypnyk, V.M. Loktev, Phys. Rev. B 73, 241402 (2006)

    Article  ADS  Google Scholar 

  103. V.M. Pereira, F. Guinea, J.M.B. Lopes dos Santos, N.M.R. Peres, A.H. Castro Neto, Phys. Rev. Lett. 96, 036801 (2006)

    Article  ADS  Google Scholar 

  104. T.O. Wehling, A.V. Balatsky, M.I. Katsnelson, A.I. Lichtenstein, K. Scharnberg, R. Weisendanger, Phys. Rev. B 75, 125425 (2007)

    Article  ADS  Google Scholar 

  105. J.P. Robinson, H. Schomerus, L. Oroszlány, V.I. Fal’ko, Phys. Rev. Lett. 101, 196803 (2008)

    Google Scholar 

  106. V.M. Pereira, J.M.B. Lopes dos Santos, A.H. Castro Neto, Phys. Rev.B 77, 115109 (2008)

    Article  ADS  Google Scholar 

  107. T.O. Wehling, M.I. Katsnelson, A.I. Lichtenstein, Chem. Phys. Lett. 476, 125 (2009)

    Article  ADS  Google Scholar 

  108. Image made with MacMolPlot program of B.M. Bode, M.S. Gordon, J. Mol. Graphics Modeling 16, 133 (1998)

    Google Scholar 

  109. M.J. Frisch et al., computer code GAUSSIAN 03, revision A.02 (Gaussian Inc., Pittsburgh, PA, 2009) The HSEh1PBE hybrid functional and 6-311G(d) basis set were used to calculate the geometries in Fig. 13.10

    Google Scholar 

  110. J.H. Ammeter, H.-B. Bürgi, J.C. Thibeault, R. Hoffman, J. Am. Chem. Soc. 100, 3686 (1978) as implemented in the YAEHMOP numerical package by G.A. Landrum, W.V. Glassey (Source-Forge, Fremont, California, 2001)

    Google Scholar 

  111. S. Datta, W. Tian, S. Hong, R. Reifenberger, J.I. Henderson, C.P. Kubiak, Phys. Rev. Lett. 79, 2530 (1997)

    Article  ADS  Google Scholar 

  112. E.G. Emberly, G. Kirczenow, Phys. Rev. Lett. 87, 269701 (2001); Phys. Rev. B 64, 235412 (2001)

    Google Scholar 

  113. J.G. Kushmerick, D.B. Holt, J.C. Yang, J. Naciri, M.H. Moore, R. Shashidhar, Phys. Rev. Lett. 89, 086802 (2002)

    Article  ADS  Google Scholar 

  114. D.M. Cardamone, G. Kirczenow, Phys. Rev. B 77, 165403 (2008)

    Article  ADS  Google Scholar 

  115. F. Demir, G. Kirczenow, J. Chem. Phys. 134, 121103 (2011)

    Article  ADS  Google Scholar 

  116. G. Kirczenow, P.G. Piva, R.A. Wolkow, Phys. Rev. B 72, 245306 (2005)

    Article  ADS  Google Scholar 

  117. P.G. Piva, R.A. Wolkow, G. Kirczenow, Phys. Rev. Lett. 101, 106801 (2008)

    Article  ADS  Google Scholar 

  118. J. Buker, G. Kirczenow, Phys. Rev. B 78, 125107 (2008)

    Article  ADS  Google Scholar 

  119. J. Buker, G. Kirczenow, Phys. Rev. B 72, 205338 (2005)

    Article  ADS  Google Scholar 

  120. E.G. Emberly, G. Kirczenow, Chem. Phys. 281, 311 (2002), Appendix A.

    Google Scholar 

  121. L.E. Ballentine, Quantum Mechanics (Prentice Hall, Englewood Cliffs, New Jersey, 1990) Ch. 16-5.

    Google Scholar 

  122. Yu. V. Skrypnyk, V.M. Loktev, Low Temp. Phys. 33, 9 (2007)

    Article  Google Scholar 

  123. D.M. Basko, Phys. Rev. B 78, 115432 (2008)

    Article  ADS  Google Scholar 

  124. S.S. Pershoguba, Yu. V. Skrypnyk, V.M. Loktev, Phys. Rev. B 80, 214201 (2009)

    Article  ADS  Google Scholar 

  125. Yu. V. Skrypnyk, V.M. Loktev, Phys. Rev. B 82, 085436 (2010)

    Article  ADS  Google Scholar 

  126. E. Emberly, G. Kirczenow, Phys. Rev. Lett. 81, 5205 (1998)

    Article  ADS  Google Scholar 

  127. E.G. Emberly, G. Kirczenow, J. Phys.: Condens. Matter 11, 6911 (1999)

    Google Scholar 

  128. G. Kirczenow, P.G. Piva, R.A. Wolkow, Phys. Rev. B 80, 035309 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Kirczenow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirczenow, G., Ihnatsenka, S. (2011). Exploring Quantum Transport in Graphene Ribbons with Lattice Defects and Adsorbates. In: Raza, H. (eds) Graphene Nanoelectronics. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22984-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22984-8_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20467-8

  • Online ISBN: 978-3-642-22984-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics