Models of and Experiments with Reaching Tasks in Haptic Virtual Environments

  • Mikhail Svinin
  • Igor Goncharenko
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6851)


The paper presents an analysis of human reaching movements in manipulation of flexible objects. To predict the trajectory of human hand we resort to two models, the lowest polynomial order model for the hand movement and the minimum hand jerk model. First, we derive analytical solutions for these models for the dynamic environment represented by a multi-mass linear flexible object. Then, we present experimental results obtained with the use of a haptic interface. It is shown that the lowest polynomial order model does not fit with the experimental data while the prediction by the minimum hand jerk criterion matches the experimental patterns with reasonable accuracy.


Human movements reaching task dynamic environment modeling haptic interface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arimoto, S., Sekimoto, M., Hashiguchi, H., Ozawa, R.: Natural resolution of ill-posedness of inverse kinematics for redundant robots: A challenge to Bernstein’s degrees-of-freedom problem. Advanced Robotics 19(4), 401–434 (2005)CrossRefGoogle Scholar
  2. 2.
    Arnold, V.: Mathematical Methods of Classical Mechanics. Springer, Berlin (1980)Google Scholar
  3. 3.
    Dingwell, J., Mah, C., Mussa-Ivaldi, F.: Experimentally confirmed mathematical model for human control of a non-rigid object. Journal of Neurophysiology 91, 1158–1170 (2004)CrossRefGoogle Scholar
  4. 4.
    Flash, T., Hogan, N.: The coordination of arm movements: An experimentally confirmed mathematical model. The Journal of Neuroscience 5(7), 1688–1703 (1985)Google Scholar
  5. 5.
    Flash, T., Hogan, N., Richardson, M.: Optimization principles in motor control. In: Arbib, M. (ed.) The Handbook of Brain Theory and Neural Networks, 2nd edn., pp. 827–831. MIT Press, Cambridge (2003)Google Scholar
  6. 6.
    Gantmacher, F.: Lectures in Analytical Mechanics. Mir Publishers, Moscow (1975)Google Scholar
  7. 7.
    Morita, S., Ohtsuka, T.: Natural motion trajectory generation based on Hamilton’s principle. Transactions of the Society of Instrument and Control Engineers 42(1), 1–10 (2006) (in Japanese)CrossRefGoogle Scholar
  8. 8.
    Svinin, M., Goncharenko, I., Luo, Z., Hosoe, S.: Reaching movements in dynamic environments: How do we move flexible objects? IEEE Transactions on Robotics 22(4), 724–739 (2006)CrossRefGoogle Scholar
  9. 9.
    Uno, Y., Kawato, M., Suzuki, R.: Formation and control of optimal trajectory in human multijoint arm movement. minimum torque-change model. Biological Cybernetics 61, 89–101 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mikhail Svinin
    • 1
  • Igor Goncharenko
    • 2
  1. 1.Mechanical Engineering Department, Faculty of EngineeringKyushu UniversityNishi-kuJapan
  2. 2.3D System DivisionI-Net CorporationOota-kuJapan

Personalised recommendations