Advertisement

Analysis of the JND of Stiffness in Three Modes of Comparison

  • Umut Koçak
  • Karljohan Lundin Palmerius
  • Camilla Forsell
  • Anders Ynnerman
  • Matthew Cooper
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6851)

Abstract

Understanding and explaining perception of touch is a non-trivial task. Even seemingly trivial differences in exploration may potentially have a significant impact on perception and levels of discrimination. In this study, we explore different aspects of contact related to stiffness perception and their effects on the just noticeable difference (JND) of stiffness are surveyed. An experiment has been performed on non-deformable, compliant objects in a virtual environment with three different types of contact: Discontinuous pressure, continuous pressure and continuous lateral motion. The result shows a significantly better discrimination performance in the case of continuous pressure (a special case of nonlinearity), which can be explained by the concept of haptic memory. Moreover, it is found that the perception is worse for the changes that occur along the lateral axis than the normal axis.

Keywords

Perception stiffness exploratory procedures JND 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Choi, S., Walker, L., Tan, H.Z., Crittenden, S., Reifenberger, R.: Force constancy and its effect on haptic perception of virtual surfaces. ACM Transactions on Applied Perception 2(2), 89–105 (2005)CrossRefGoogle Scholar
  2. 2.
    Freyberger, F.K., Färber, B.: Compliance discrimination of deformable objects by squeezing with one and two fingers. In: Eurohaptics 2006, pp. 271–276 (2006)Google Scholar
  3. 3.
    Jones, L.A., Hunter, I.W.: A perceptual analysis of stiffness. Experimental Brain Research 79(1), 150–156 (1990)CrossRefGoogle Scholar
  4. 4.
    Lamotte, R.H.: Softness discrimination with a tool. The Journal of Neurophysiology 83(4), 1777–1786 (2000)Google Scholar
  5. 5.
    Lederman, S., Klatzky, R.: Haptic perception: A tutorial. Attention, Perception, and Psychophysics 71(7), 1439–1459 (2009)CrossRefGoogle Scholar
  6. 6.
    Leib, R., Nisky, I., Karniel, A.: Perception of stiffness during interaction with delay-like nonlinear force field. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds.) EuroHaptics 2010. LNCS, vol. 6191, pp. 87–92. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Levitt, H.: Transformed up-down methods in psychoacoustics. Journal of Acoustical Society of America 49, 467–477 (1971)CrossRefGoogle Scholar
  8. 8.
    Misra, S., Fuernstahl, P., Ramesh, K., Okamura, A.M., Harders, M.: Quantifying perception of nonlinear elastic tissue models using multidimensional scaling. In: Worldhaptics 2009, pp. 570–575 (2009)Google Scholar
  9. 9.
    Roland, P., Ladegaard-Pedersen, H.: A quantitative analysis of sensations of tension and of kinasthesia in man: Evidence for a peripherally originating muscular sense and for a sense of effort. Brain 100(4), 671–692 (1977)CrossRefGoogle Scholar
  10. 10.
    Shih, R., Dubrowski, A., Carnahan, H.: Evidence for haptic memory. In: WorldHaptics 2009, pp. 145–149 (2009)Google Scholar
  11. 11.
    Srinivasan, M.A., Beauregard, G., Brock, D.: The impact of visual information on the haptic perception of stiffness in virtual environments. In: ASME Dynamic Systems and Control Division, pp. 555–559 (1996)Google Scholar
  12. 12.
    Srinivasan, M.A., Lamotte, R.H.: Tactual discrimination of softness. The Journal of Neurophysiology 73(1), 88–101 (1995)Google Scholar
  13. 13.
    Tan, H.Z., Durlach, N.I., Beauregard, G., Srinivasan, M.A.: Manual discrimination of compliance using active pinch grasp: The roles of force and work cues. Perception and Psychophysics 57(4), 495–510 (1995)CrossRefGoogle Scholar
  14. 14.
    Tan, H.Z., Pang, X.-D., Durlach, N.I.: Manual resolution of length, force and compliance. In: ASME Dynamic Systems and Control Division, pp. 13–18 (1992)Google Scholar
  15. 15.
    Tiest, W.M.B., Kappers, A.M.: Cues for haptic perception of compliance. IEEE Transactions on Haptics 2(4), 189–199 (2009)CrossRefGoogle Scholar
  16. 16.
    Wu, W.-C., Basdogan, C., Srinivasan, M.A.: Visual, haptic, and biomodal perception of size and stiffness in virtual environments. In: ASME Dynamic Systems and Control Division, pp. 19–26 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Umut Koçak
    • 1
  • Karljohan Lundin Palmerius
    • 1
  • Camilla Forsell
    • 1
  • Anders Ynnerman
    • 1
  • Matthew Cooper
    • 1
  1. 1.C-ResearchLinköping UniversitySweden

Personalised recommendations