Skip to main content

Abstract

We give an algorithm that computes the final state of certain growth models without computing all intermediate states. Our technique is based on a “least action principle” which characterizes the odometer function of the growth process. Starting from an approximation for the odometer, we successively correct under- and overestimates and provably arrive at the correct final state. The degree of speedup depends on the accuracy of the initial guess.

Determining the size of the boundary fluctuations in growth models like internal diffusion-limited aggregation (IDLA) is a long-standing open problem in statistical physics. As an application of our method, we calculate the size of fluctuations over two orders of magnitude beyond previous simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://rotor-router.mpi-inf.mpg.de

  2. Asselah, A., Gaudillière, A.: From logarithmic to subdiffusive polynomial fluctuations for internal DLA and related growth models, arXiv:1009.2838 (2010)

    Google Scholar 

  3. Asselah, A., Gaudillière, A.: Sub-logarithmic fluctuations for internal DLA, arXiv:1011.4592 (2010)

    Google Scholar 

  4. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59(4), 381–384 (1987)

    Article  Google Scholar 

  5. Barve, R.D., Grove, E.F., Vitter, J.S.: Simple randomized mergesort on parallel disks. Parallel Computing 23(4-5), 601–631 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cooper, J., Spencer, J.: Simulating a random walk with constant error. Combinatorics, Probability & Computing 15, 815–822 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cooper, J., Doerr, B., Spencer, J., Tardos, G.: Deterministic random walks on the integers. European Journal of Combinatorics 28, 2072–2090 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cooper, J., Doerr, B., Friedrich, T., Spencer, J.: Deterministic random walks on regular trees. Random Structures and Algorithms 37(3), 353–366 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dhar, D.: Theoretical studies of self-organized criticality. Physica A 369, 29–70 (2006)

    Article  MathSciNet  Google Scholar 

  10. Diaconis, P., Fulton, W.: A growth model, a game, an algebra, Lagrange inversion, and characteristic classes. Rend. Sem. Mat. Univ. Politec. Torino 49(1), 95–119 (1991)

    MathSciNet  MATH  Google Scholar 

  11. Doerr, B., Friedrich, T.: Deterministic random walks on the two-dimensional grid. Combinatorics, Probability & Computing 18(1-2), 123–144 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading. In: 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 773–781 (2008)

    Google Scholar 

  13. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading: Expanders, push vs. pull, and robustness. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 366–377. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Fey, A., Levine, L., Peres, Y.: Growth rates and explosions in sandpiles. J. Stat. Phys. 138, 143–159 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Friedrich, T., Levine, L.: Fast simulation of large-scale growth models, arXiv:1006.1003 (2011)

    Google Scholar 

  16. Friedrich, T., Sauerwald, T.: The cover time of deterministic random walks. Electr. J. Comb. 17(1), 1–7 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Friedrich, T., Gairing, M., Sauerwald, T.: Quasirandom load balancing. In: 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pp. 1620–1629 (2010)

    Google Scholar 

  18. Holroyd, A.E., Propp, J.G.: Rotor walks and Markov chains. Algorithmic Probability and Combinatorics 520, 105–126 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Jerison, D., Levine, L., Sheffield, S.: Logarithmic fluctuations for internal DLA, arXiv:1010.2483 (2010)

    Google Scholar 

  20. Jerison, D., Levine, L., Sheffield, S.: Internal DLA and the Gaussian free field, arXiv:1101.0596 (2011)

    Google Scholar 

  21. Kleber, M.: Goldbug variations. Math. Intelligencer 27(1), 55–63 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lawler, G.F., Bramson, M., Griffeath, D.: Internal diffusion limited aggregation. Ann. Probab. 20(4), 2117–2140 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Levine, L., Peres, Y.: Spherical asymptotics for the rotor-router model in ℤd. Indiana Univ. Math. J. 57(1), 431–450 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Levine, L., Peres, Y.: Strong spherical asymptotics for rotor-router aggregation and the divisible sandpile. Potential Anal. 30, 1–27 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meakin, P., Deutch, J.M.: The formation of surfaces by diffusion-limited annihilation. J. Chem. Phys. 85 (1986)

    Google Scholar 

  26. Moore, C., Machta, J.: Internal diffusion-limited aggregation: parallel algorithms and complexity. J. Stat. Phys. 99(3-4), 661–690 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Propp, J.G., Wilson, D.B.: How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph. J. Algorithms 27, 170–217 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Smell as a computational resource – a lesson we can learn from the ant. In: 4th Israel Symposium on Theory of Computing and Systems (ISTCS 1996), pp. 219–230 (1996)

    Google Scholar 

  29. Wilson, D.B.: Generating random spanning trees more quickly than the cover time. In: 28th Annual ACM Symposium on the Theory of Computing (STOC 1996), pp. 296–303 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedrich, T., Levine, L. (2011). Fast Simulation of Large-Scale Growth Models. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2011 2011. Lecture Notes in Computer Science, vol 6845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22935-0_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22935-0_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22934-3

  • Online ISBN: 978-3-642-22935-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics