Skip to main content

An Efficient Partitioning Oracle for Bounded-Treewidth Graphs

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2011, RANDOM 2011)

Abstract

Partitioning oracles were introduced by Hassidim et al. (FOCS 2009) as a generic tool for constant-time algorithms. For any ε > 0, a partitioning oracle provides query access to a fixed partition of the input bounded-degree minor-free graph, in which every component has size poly(1/ε), and the number of edges removed is at most εn, where n is the number of vertices in the graph.

However, the oracle of Hassidim et al. makes an exponential number of queries to the input graph to answer every query about the partition. In this paper, we construct an efficient partitioning oracle for graphs with constant treewidth. The oracle makes only O(poly(1/ε)) queries to the input graph to answer each query about the partition.

Examples of bounded-treewidth graph classes include k-outerplanar graphs for fixed k, series-parallel graphs, cactus graphs, and pseudoforests. Our oracle yields poly(1/ε)-time property testing algorithms for membership in these classes of graphs. Another application of the oracle is a poly(1/ε)-time algorithm that approximates the maximum matching size, the minimum vertex cover size, and the minimum dominating set size up to an additive εn in graphs with bounded treewidth. Finally, the oracle can be used to test in poly(1/ε) time whether the input bounded-treewidth graph is k-colorable or perfect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Annals of Mathematics 162(1), 439–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H.: Dynamic programming on graphs with bounded treewidth. In: Automata, Languages and Programming, pp. 105–118 (1988)

    Google Scholar 

  3. Robertson, N., Seymour, P.: Graph minors. III. Planar tree-width. Journal of Combinatorial Theory, Series B 36(1), 49–64 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Robertson, N., Seymour, P.: Graph minors. II. Algorithmic aspects of tree-width. Journal of Algorithms 7(3), 309–322 (1986)

    Google Scholar 

  5. Bodlaender, H.: A tourist guide through treewidth. Developments in Theoretical Computer Science (1994)  1

    Google Scholar 

  6. Atserias, A.: On digraph coloring problems and treewidth duality. European Journal of Combinatorics 29(4), 796–820 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bodlaender, H., Koster, A.: Combinatorial optimization on graphs of bounded treewidth. The Computer Journal, 1 (2007)

    Google Scholar 

  8. Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica 32(2), 302–343 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM Journal on Applied Mathematics 36, 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Alon, N., Seymour, P.D., Thomas, R.: A separator theorem for graphs with an excluded minor and its applications. In: STOC, pp. 293–299 (1990)

    Google Scholar 

  12. Hassidim, A., Kelner, J.A., Nguyen, H.N., Onak, K.: Local graph partitions for approximation and testing. In: FOCS, pp. 22–31 (2009)

    Google Scholar 

  13. Onak, K.: New Sublinear Methods in the Struggle Against Classical Problems. PhD thesis. Massachusetts Institute of Technology (2010)

    Google Scholar 

  14. Benjamini, I., Schramm, O., Shapira, A.: Every minor-closed property of sparse graphs is testable. In: STOC, pp. 393–402 (2008)

    Google Scholar 

  15. Yoshida, Y., Ito, H.: Testing outerplanarity of bounded degree graphs. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS, vol. 6302, pp. 642–655. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Applied Mathematics 23(1), 11–24 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theor. Comput. Sci. 381(1-3), 183–196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marko, S., Ron, D.: Approximating the distance to properties in bounded-degree and general sparse graphs. ACM Transactions on Algorithms 5(2) (2009)

    Google Scholar 

  19. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local improvements. In: FOCS, pp. 327–336 (2008)

    Google Scholar 

  20. Yoshida, Y., Yamamoto, M., Ito, H.: An improved constant-time approximation algorithm for maximum matchings. In: STOC, pp. 225–234 (2009)

    Google Scholar 

  21. Elek, G.: Parameter testing in bounded degree graphs of subexponential growth. Random Struct. Algorithms 37(2), 248–270 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Newman, I., Sohler, C.: Every property of hyperfinite graphs is testable. In: STOC, pp. 675–684 (2011)

    Google Scholar 

  23. Czumaj, A., Shapira, A., Sohler, C.: Testing hereditary properties of nonexpanding bounded-degree graphs. SIAM J. Comput. 38(6), 2499–2510 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P.D., Vuskovic, K.: Recognizing Berge graphs. Combinatorica 25(2), 143–186 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ding, G., Oporowski, B.: Some results on tree decomposition of graphs. Journal of Graph Theory 20(4), 481–499 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wood, D.R.: On tree-partition-width. European Journal of Combinatorics 30(5), 1245–1253 (2009); Part Special Issue on Metric Graph Theory

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Edelman, A., Hassidim, A., Nguyen, H.N., Onak, K. (2011). An Efficient Partitioning Oracle for Bounded-Treewidth Graphs. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2011 2011. Lecture Notes in Computer Science, vol 6845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22935-0_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22935-0_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22934-3

  • Online ISBN: 978-3-642-22935-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics