Skip to main content

Abstract

Probabilistically checkable debate systems (PCDSs) are debates between two competing provers, in which a polynomial-time verifier inspects a constant number of bits of the debate. It was shown by Condon, Feigenbaum, Lund, and Shor that every language in PSPACE has a PCDS in which the debate length is polynomially bounded. Using this result, they showed that the approximation versions of some natural PSPACE-complete problems are also PSPACE-complete.

We give an improved construction of these debates: for any language L that has an ordinary debate system definable by uniform circuits of size s = s(n), we give a PCDS for L whose debate is of total bitlength \(\widetilde{O}(s)\), with a verifier that uses only log 2 s + log 2 (polylog (s)) bits of randomness. This yields a much tighter connection between the time complexity of natural PSPACE-complete problems and the time complexity of their approximation versions.

Our key ingredient is a novel application of error-resilient communication protocols, as developed by Schulman; we use the more recent protocol of Braverman and Rao. We show that by requiring ordinary debates to be encoded in an error-resilient fashion, we can endow them with a useful “stability” property. Stable debates can then be transformed into PCDSs, by applying efficient PCPPs (as given by Dinur). Our main technical challenge in building stable debates is to enforce error-resilient encoding by the debaters. To achieve this, we show that there is a constant-round debate system, with a very efficient verifier, to debate whether a communication transcript follows the Braverman-Rao protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. In: 31st IEEE FOCS, pp. 16–25 (1990)

    Google Scholar 

  3. Ben-Sasson, E., Goldreich, O., Harsha, P., Sudan, M., Vadhan, S.P.: Robust PCPs of proximity, shorter PCPs, and applications to coding. SIAM J. Comput. 36(4), 889–974 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Sasson, E., Sudan, M.: Robust locally testable codes and products of codes. Random Struct. Algorithms 28(4), 387–402 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Braverman, M.: Towards deterministic tree code constructions. Electronic Colloquium on Computational Complexity (ECCC) TR11-064 (2011)

    Google Scholar 

  6. Braverman, M., Rao, A.: Towards coding for maximum errors in interactive communication. In: 43rd ACM STOC, pp. 159–166 (1990)

    Google Scholar 

  7. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chandra, A.K., Stockmeyer, L.J.: Alternation. In: 17th IEEE FOCS, pp. 98–108 (1976)

    Google Scholar 

  9. Condon, A., Feigenbaum, J., Lund, C., Shor, P.W.: Probabilistically checkable debate systems and nonapproximability of PSPACE-hard functions. Chicago J. Theor. Comput. Sci. (1995)

    Google Scholar 

  10. Condon, A., Feigenbaum, J., Lund, C., Shor, P.W.: Random debaters and the hardness of approximating stochastic functions. SIAM J. Comput. 26(2), 369–400 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dinur, I.: The PCP theorem by gap amplification. J. ACM 54(3), 12 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dinur, I., Reingold, O.: Assignment testers: Towards a combinatorial proof of the PCP theorem. SIAM J. Comput. 36(4), 975–1024 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Drucker, A.: A PCP characterization of AM. Electronic Colloquium on Computational Complexity (ECCC) TR10-019 (2010); To appear in ICALP 2011

    Google Scholar 

  14. Fortnow, L.: Beyond NP: The work and legacy of Larry Stockmeyer. In: 37th ACM STOC, pp. 120–127 (2005)

    Google Scholar 

  15. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gelles, R., Sahai, A.: Potent tree codes and their applications: Coding for interactive communication, revisited. ArXiv e-prints (April 2011)

    Google Scholar 

  17. Ko, K.-I., Lin, C.-L.: Non-approximability in the polynomial-time hierarchy. TR 94-2, Dept. of Computer Science. SUNY at Stony Brook (1994)

    Google Scholar 

  18. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive proof systems. In: 31st IEEE FOCS, pp. 2–10 (1990)

    Google Scholar 

  19. Moitra, A.: Efficiently coding for interactive communication. Electronic Colloquium on Computational Complexity (ECCC) TR11-042 (2011)

    Google Scholar 

  20. Schulman, L.J.: Coding for interactive communication. IEEE Trans. Inf. Theory 42(6), 1745–1756 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)

    Article  MathSciNet  Google Scholar 

  22. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE Trans. Inf. Theory 42(6), 1723–1731 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time (preliminary report). In: 5th ACM STOC, pp. 1–9 (1973)

    Google Scholar 

  24. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 1–22 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Williams, R.: Non-linear time lower bound for (succinct) quantified Boolean formulas. Electronic Colloquium on Computational Complexity (ECCC) TR08-076 (2008)

    Google Scholar 

  26. Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theor. Comput. Sci. 3(1), 23–33 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Drucker, A. (2011). Efficient Probabilistically Checkable Debates. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2011 2011. Lecture Notes in Computer Science, vol 6845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22935-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22935-0_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22934-3

  • Online ISBN: 978-3-642-22935-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics