Skip to main content

Scheduling Resources for Throughput Maximization

  • Conference paper
  • 1537 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6845))

Abstract

We consider the problem of scheduling a set of resources over time. Each resource is specified by a set of time intervals (and the associated amount of resource available), and we can choose to schedule it in one of these intervals. The goal is to maximize the number of demands satisfied, where each demand is an interval with a starting and ending time, and a certain resource requirement. This problem arises naturally in many scenarios, e.g., the resource could be an energy source, and we would like to suitably combine different energy sources to satisfy as many demands as possible. We give a constant factor randomized approximation algorithm for this problem, under suitable assumptions (the so called no-bottleneck assumptions). We show that without these assumptions, the problem is as hard as the independent set problem. Our proof requires a novel configuration LP relaxation for this problem. The LP relaxation exploits the pattern of demand sharing that can occur across different resources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggoune, R.: Minimizing the makespan for the flow shop scheduling problem with availability constraints. European J. of Oper. Res. 125, 534–543 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bansal, N., Chakrabarti, A., Epstein, A., Schieber, B.: A quasi-ptas for unsplittable flow on line graphs. In: STOC (2006)

    Google Scholar 

  3. Bar-Noy, A., Bar-Yehuda, R., Freund, A., Noar, J., Schieber, B.: A unified approach to approximating resource allocation and scheduling. Journal of the ACM 48(5), 1069–1090 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonsma, P., Schulz, J., Wiese, A.: A constant factor approximation algorithm for unsplittable flow on paths. CoRR, abs/1102.3643 (2011)

    Google Scholar 

  5. Calinescu, G., Chakrabarti, A., Karloff, H., Rabani, Y.: Improved approximation algorithms for resource allocation. In: Cook, W.J., Schulz, A.S. (eds.) IPCO 2002. LNCS, vol. 2337, pp. 401–414. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Chakaravarthy, V., Choudhury, A., Sabharwal, Y.: A near-linear time constant factor algorithm for unsplittable flow problem on line with bag constraints. In: FSTTCS (2010)

    Google Scholar 

  7. Chakaravarthy, V., Pandit, V., Sabharwal, Y., Seetharam, D.: Varying bandwidth resource allocation problem with bag constraints. In: IPDPS (2010)

    Google Scholar 

  8. Chakrabarti, A., Chekuri, C., Gupta, A., Kumar, A.: Approximation algorithms for the unsplittable flow problem. Algorithmica 47(1), 53–78 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chekuri, C., Mydlarz, M., Shepherd, F.: Multicommodity demand flow in a tree and packing integer programs. ACM Transactions on Algorithms 3(3) (2007)

    Google Scholar 

  10. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: FOCS (2010)

    Google Scholar 

  11. Gupta, A., Roth, A., Schoenebeck, G., Talwar, K.: Constrained non-monotone submodular maximization: Offline and secretary algorithms. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 246–257. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Hatziargyriou, N., Asano, H., Iravani, R., Marnay, C.: Microgrids. IEEE Power and Energy Magazine 5(4), 78–94 (2007)

    Article  Google Scholar 

  13. Khuller, S., Li, J., Saha, B.: Energy efficient scheduling via partial shutdown. In: Proceedings of the ACM-SIAM Symosium on Discrete Algorithms, SODA (2010)

    Google Scholar 

  14. Schmidt, G.: Scheduling with limited machine availability. European J. of Oper. Res. 121, 1–15 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: STOC (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chakaravarthy, V.T., Kumar, A., Pandit, V., Roy, S., Sabharwal, Y. (2011). Scheduling Resources for Throughput Maximization. In: Goldberg, L.A., Jansen, K., Ravi, R., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2011 2011. Lecture Notes in Computer Science, vol 6845. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22935-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22935-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22934-3

  • Online ISBN: 978-3-642-22935-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics