Skip to main content

SSCP: Mining Statistically Significant Co-location Patterns

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6849))

Abstract

Co-location pattern discovery searches for subsets of spatial features whose instances are often located at close spatial proximity. Current algorithms using user specified thresholds for prevalence measures may report co-locations even if the features are randomly distributed. In our model, we look for subsets of spatial features which are co-located due to some form of spatial dependency but not by chance. We first introduce a new definition of co-location patterns based on a statistical test. Then we propose an algorithm for finding such co-location patterns where we adopt two strategies to reduce computational cost compared to a naïve approach based on simulations of the data distribution. We propose a pruning strategy for computing the prevalence measures. We also show that instead of generating all instances of an auto-correlated feature during a simulation, we could generate a reduced number of instances for the prevalence measure computation. We evaluate our algorithm empirically using synthetic and real data and compare our findings with the results found in a state-of-the-art co-location mining algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large Databases. In: Proc. VLDB, pp. 487–499 (1994)

    Google Scholar 

  2. Celik, M., Shekhar, S., Rogers, J.P., Shine, J.A.: Mixed-Drove Spatiotemporal Co-occurence Pattern Mining. IEEE TKDE 20(10), 1322–1335 (2008)

    Google Scholar 

  3. Cressie, N.A.C.: Statistics for Spatial Data. Wiley, Chichester (1993)

    MATH  Google Scholar 

  4. Diggle, P.J., Gratton, R.J.: Monte Carlo Methods of Inference for Implicit Statistical Models. J. of the Royal Statist. Society, Series B 46(2), 193–227 (1984)

    MATH  Google Scholar 

  5. Harkness, R.D., Isham, V.: A Bivariate Spatial Point Pattern of Ants’ Nests. J. of the Royal Statist. Society, Series C (Appl. Statist.) 32(3), 293–303 (1983)

    Google Scholar 

  6. Huang, Y., Shekhar, S., Xiong, H.: Discovering Colocation Patterns from Spatial Data Sets: A General Approach. IEEE TKDE 16(12), 1472–1485 (2004)

    Google Scholar 

  7. Illian, J., Penttinen, A., Stoyan, H., Stoyan, D.: Statistical Analysis and Modelling of Spatial Point Patterns. Wiley, Chichester (2008)

    MATH  Google Scholar 

  8. Koperski, K., Han, J.: Discovery of Spatial Association Rules in Geographic Information Databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 47–66. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  9. Mane, S., Murray, C., Shekhar, S., Srivastava, J., Pusey, A.: Spatial Clustering of Chimpanzee Locations for Neighborhood Identification. In: Proc. ICDM, pp. 737–740 (2005)

    Google Scholar 

  10. Morimoto, Y.: Mining Frequent Neighboring Class Sets in Spatial Databases. In: Proc. SIGKDD, pp. 353–358 (2001)

    Google Scholar 

  11. Ripley, B.: The Second-Order Analysis of Stationary Point Processes. J. of Appl. Probability 13(2), 255–266 (1976)

    Article  MATH  Google Scholar 

  12. Shekhar, S., Huang, Y.: Discovering Spatial Co-location Patterns: A Summary of Results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 236–256. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Xiao, X., Xie, X., Luo, Q., Ma, W.Y.: Density Based Co-location Pattern Discovery. In: Proc. GIS, pp. 250–259 (2008)

    Google Scholar 

  14. Yoo, J.S., Shekhar, S.: A Partial Join Approach for Mining Co-location Patterns. In: Proc. GIS, pp. 241–249 (2004)

    Google Scholar 

  15. Yoo, J.S., Shekhar, S.: A Joinless Approach for Mining Spatial Colocation Patterns. IEEE TKDE 18(10), 1323–1337 (2006)

    Google Scholar 

  16. Yoo, J.S., Shekhar, S., Kim, S., Celik, M.: Discovery of Co-evolving Spatial Event Sets. In: Proc. SDM, pp. 306–315 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Barua, S., Sander, J. (2011). SSCP: Mining Statistically Significant Co-location Patterns. In: Pfoser, D., et al. Advances in Spatial and Temporal Databases. SSTD 2011. Lecture Notes in Computer Science, vol 6849. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22922-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22922-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22921-3

  • Online ISBN: 978-3-642-22922-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics