Skip to main content

Morphogenesis and Infection in Botrytis cinerea

  • Chapter
  • First Online:
Book cover Morphogenesis and Pathogenicity in Fungi

Part of the book series: Topics in Current Genetics ((TCG,volume 22))

Abstract

Botrytis cinerea, the gray mold fungus, is a ubiquitous pathogen of high economic importance. Hence, its development and infection cycle have been well characterized over the years. Modern approaches using molecular methods and “omics” data now have opened new and fascinating perspectives on the molecular mechanisms involved in morphogenesis and development, and their relationship to the highly efficient pathogenic strategies used by this pathogen. This chapter focuses on recent data obtained by analyzing signaling cascades which influence morphogenesis and virulence, highlighting the plethora of open questions that still remain. The light-dependent regulation of development is discussed as a particular example of a highly interesting area of research in which the broad classical analyses are not yet substantiated by molecular investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ROS:

Reactive oxygen species

CWDE:

Cell wall degrading enzyme

MAPK:

Mitogen-activated protein kinase

References

  • Akutsu K, Ko K, Misato T (1981) Role of conidial fusion in infection by Botrytis cinerea on cucumber leaves. Ann Phytopath Soc Japan 47:15–23

    Article  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JA, Viaud M, et al. (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230

    Google Scholar 

  • Backhouse D, Willetts HJ (1987) Development and structure of infection cushions of Botrytis cinerea. Trans Br Mycol Soc 89:89–95

    Article  Google Scholar 

  • Bayram O, Braus GH, Fischer R, Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47:900–908

    Article  PubMed  CAS  Google Scholar 

  • Blakeman JP (1975) Germination of Botrytis cinerea conidia in vitro in relation to nutrient conditions on leaf surfaces. Trans Br Mycol Soc 65:239–247

    Article  Google Scholar 

  • Bolton MD, Thomma BPHJ, Nelson BD (2006) Pathogen profile - Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16

    Article  PubMed  CAS  Google Scholar 

  • Brito N, Espino JJ, González C (2006) The endo-beta-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol Plant Microbe Interact 19:25–32

    Article  PubMed  CAS  Google Scholar 

  • Büttner P, Koch F, Voigt K, Quidde T, Risch S, Blaich R, Brückner B, Tudzynski P (1994) Variations in ploidy among isolates of Botrytis cinerea: implications for genetic and molecular analyses. Curr Genet 25:445–450

    Article  PubMed  Google Scholar 

  • Calvo AM (2008) The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol 45:1053–1061

    Article  PubMed  CAS  Google Scholar 

  • Carlile MJ, Sellin MA (1963) An endogenous inhibition of spore germination in fungi. Trans Br Mycol Soc 46:15–18

    Article  Google Scholar 

  • Chen CH, Dunlap JC, Loros JJ (2010) Neurospora illuminates fungal photoreception. Fungal Genet Biol 47:922–999

    Article  PubMed  Google Scholar 

  • Choquer M, Fournier E, Kunz C, Levis C, Pradier JM, Simon A, Viaud M (2007) Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol Lett 277:1–10

    Article  PubMed  CAS  Google Scholar 

  • Coley-Smith JR, Cooke RC (1971) Survival and germination of fungal sclerotia. Annu Rev Phytopathol 9:65–92

    Article  Google Scholar 

  • Coley-Smith JR, Verhoeff K, Jarvis WR (1980) The biology of Botrytis cinerea. Academic, London

    Google Scholar 

  • Collado IG, Sánchez AJ, Hanson JR (2007) Fungal terpene metabolites: biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea. Nat Prod Rep 24:674–686

    Article  PubMed  CAS  Google Scholar 

  • Dalmais B, Schumacher J, Moraga J, Le Pêcheur P, Tudzynski B, Collado IG, Viaud M (2011) The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence with botrydial. Mol Plant Pathol 12:564–579

    Article  PubMed  CAS  Google Scholar 

  • Döhlemann G, Berndt P, Hahn M (2006a) Different signalling pathways involving a Galpha protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol 59:821–836

    Article  Google Scholar 

  • Döhlemann G, Berndt P, Hahn M (2006b) Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiology 152:2625–2634

    Article  Google Scholar 

  • Elad Y, Williamson B, Tudzynski P, Delen N (2004) Botrytis: biology, pathology and control. Kluwer, Dordrecht

    Google Scholar 

  • Faretra F, Antonacci E, Pollastro S (1988) Sexual behaviour and mating system of Botryotinia fuckeliana, teleomorph of Botrytis cinerea. J Gen Microbiol 134:2543–2550

    Google Scholar 

  • Gourgues M, Brunet-Simon A, Lebrun MH, Levis C (2004) The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Mol Microbiol 51:619–629

    Article  PubMed  CAS  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    Article  PubMed  CAS  Google Scholar 

  • Grindle (1979) Phenotypic differences between natural and induced variants of Botrytis cinerea. J Gen Microbiol 111:109–120

    Google Scholar 

  • Heller J, Tudzynski P (2011) ROS in phytopathogenic fungi: signaling, development and disease. Annu Rev Phytopathol 49:369–390

    Google Scholar 

  • Holz G, Coertze S, Williamson B (2004) The ecology of Botrytis on plant surfaces. In: Elad Y, Williamson B, Tudzynski P, and Delen N (eds) Botrytis, biology, pathology and control. Kluwer, Dordrecht pp. 9–27.

    Google Scholar 

  • Honda Y, Mizumura Y (1991) Light and temperature dependent conidium and sclerotium in Botrytis spp. Bull Fac Agric Shimane Univ 25:27–35

    Google Scholar 

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the fungal kingdom Mycota. Fungal Genet Biol 47:881–892

    Article  PubMed  Google Scholar 

  • Islam SZ, Honda Y, Sonhaji M (1998) Phototropism of conidial germ tubes of Botrytis cinerea and its implication in plant infection processes. Plant Dis 82:850–856

    Article  Google Scholar 

  • Jaffe L, Etzold H (1962) Orientation and locus of tropic photoreceptor molecules in spores of Botrytis and Osmunda. J Cell Biol 13:13–31

    Article  PubMed  CAS  Google Scholar 

  • Jarvis WR (1962) The dispersal of spores of Botrytis cinerea fr. in a raspberry plantation. Trans Br Mycol Soc 45:549–559

    Article  Google Scholar 

  • Käfer E (1965) Origins of translocations in Aspergillus nidulans. Genetics 52:217–232

    PubMed  Google Scholar 

  • Kars I, Krooshof GH, Wagemakers L, Joosten R, Benen JA, van Kan JA (2005) Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris. Plant J 43:213–225

    Article  PubMed  CAS  Google Scholar 

  • Klimpel A, Schulze Gronover C, Williamson B, Stewart JA, Tudzynski B (2002) The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Mol Plant Pathol 3:439–450

    Article  PubMed  CAS  Google Scholar 

  • Kokkelink L, Minz A, Al-Masri M, Giesbert S, Barakat R, Sharon A, Tudzynski P (in press) The small GTPase BcCdc42 affects nuclear division, germination and virulence of the gray mold fungus Botrytis cinerea. Fungal Genet Biol (2011) doi:10.1016/j.fgb.2011.07.007.

    Google Scholar 

  • Kritzman G, Gilan D, Chet I (1980) Germination-inhibitor in Botrytis allii spores. Phytoparasitica 8:73–76

    Article  Google Scholar 

  • Levis C, Dutertre M, Fortini D, Brygoo Y (1997) Telomeric DNA of Botrytis cinerea: a useful tool for strain identification. FEMS Microbiol Lett 157:267–272

    Article  PubMed  CAS  Google Scholar 

  • Michielse CB, Becker M, Heller J, Moraga J, Collado IG, Tudzynski P (2011) The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Mol Plant Microbe Interact 24:1074–1085

    Google Scholar 

  • Noda J, Brito N, González C (2010) The Botrytis cinerea xylanase Xyn11A contributes to virulence with its necrotizing activity, not with its catalytic activity. BMC Plant Biol 10:38

    Article  PubMed  Google Scholar 

  • Pinedo C, Wang CM, Pradier JM, Dalmais B, Choquer M, Le Pêcheur P, Morgant G, Collado IG, Cane DE, Viaud M (2008) Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. ACS Chem Biol 3:791–801

    Article  PubMed  CAS  Google Scholar 

  • Rahmann MZ, Honda Y, Islam SZ, Arase S (2002) Effect of metabolic inhibitors on red light-induced resistance of broad bean (Vicia faba L.) against Botrytis cinerea. J Phytopathol 150:463–468

    Article  Google Scholar 

  • Reino JL, Hernández-Galán R, Durán-Patrón R, Collado IG (2004) Virulence-toxin production relationship in isolates of the plant pathogenic fungus Botrytis cinerea. J Phytopathol 152:563–566

    Article  CAS  Google Scholar 

  • Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610

    Article  PubMed  CAS  Google Scholar 

  • Rolke Y, Liu S, Quidde T, Williamson B, Schouten A, Weltring KM, Siewers V, Tenberge KB, Tudzynski B, Tudzynski P (2004) Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BcSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BcGOD1) is dispensable. Mol Plant Pathol 5:17–27

    Article  PubMed  CAS  Google Scholar 

  • Rui O, Hahn M (2007) The Slt2-type MAP kinase Bmp3 of Botrytis cinerea is required for normal saprotrophic growth, conidiation, plant surface sensing and host tissue colonization. Mol Plant Pathol 8:173–184

    Article  PubMed  CAS  Google Scholar 

  • Schamber A, Leroch M, Diwo J, Mendgen K, Hahn M (2010) The role of mitogen-activated protein (MAP) kinase signalling components and the Ste12 transcription factor in germination and pathogenicity of Botrytis cinerea. Mol Plant Pathol 11:105–119

    Article  PubMed  CAS  Google Scholar 

  • Schulze Gronover C, Kasulke D, Tudzynski P, Tudzynski B (2001) The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact 14:1293–1302

    Article  Google Scholar 

  • Schulze Gronover C, Schorn C, Tudzynski B (2004) Identification of Botrytis cinerea genes up-regulated during infection and controlled by the Galpha subunit BCG1 using suppression subtractive hybridization (SSH). Mol Plant Microbe Interact 17:537–546

    Article  PubMed  Google Scholar 

  • Schumacher J, de Larrinoa IF, Tudzynski B (2008a) Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot Cell 7:584–601

    Article  PubMed  CAS  Google Scholar 

  • Schumacher J, Kokkelink L, Huesmann C, Jimenez-Teja D, Collado I, Barakat R, Tudzynski P, Tudzynski B (2008b) The cAMP-dependent signalling pathway and its role in conidial germination, growth and virulence of the grey mould fungus Botrytis cinerea. Mol Plant Microbe Interact 21:1443–1459

    Article  PubMed  CAS  Google Scholar 

  • Schumacher J, Viaud M, Simon A, Tudzynski B (2008c) The Galpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Mol Microbiol 67:1027–1250

    Article  PubMed  CAS  Google Scholar 

  • Segmüller N, Ellendorf U, Tudzynski B, Tudzynski P (2007) BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryot Cell 6:211–221

    Article  PubMed  Google Scholar 

  • Segmüller N, Kokkelink L, Giesbert S, Odinius D, van Kan J, Tudzynski P (2008) NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Mol Plant Microbe Interact 21:808–819

    Article  PubMed  Google Scholar 

  • Siewers V, Viaud M, Jimenez-Teja D, Collado IG, Schulze Gronover C, Pradier JM, Tudzynski B, Tudzynski P (2005) Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant Microbe Interact 18:602–612

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Oda Y (1979) Inhibitory loci of both blue and near ultraviolet lights on lateral-type sclerotial development in Botrytis cinerea. Ann Phytopath Soc Japan 45:54–61

    Article  Google Scholar 

  • Suzuki Y, Kumagai T, Oda Y (1977) Locus of blue and near ultraviolet reversible photoreaction in the stages of conidial development in Botrytis cinerea. J Gen Microbiol 98:199–204

    PubMed  CAS  Google Scholar 

  • Tan KK (1974) Blue-light inhibition of sporulation in Botrytis cinerea. J Gen Microbiol 82:191–200

    Google Scholar 

  • Tan KK (1975) Recovery from the blue-light inhibition of sporulation in Botrytis cinerea. Trans Br Mycol Soc 64:223–228

    Article  Google Scholar 

  • Tan KK, Epton HAS (1973) Effect of light on the growth and sporulation of Botrytis cinerea. Trans Br Mycol Soc 61:147–157

    Article  Google Scholar 

  • Tan KK, Epton HAS (1974) Further studies on light and sporulation in Botrytis cinerea. Trans Br Mycol Soc 62:105–112

    Article  Google Scholar 

  • Tan KK, Epton HAS (1975) Interaction of near-ultraviolet, blue, red, and far-red light in sporulation of Botrytis cinerea. Trans Br Mycol Soc 64:215–222

    Article  Google Scholar 

  • Tani H, Koshino H, Sakuno E, Nakajima H (2005) Botcinins A, B, C, and D, metabolites produced by Botrytis cinerea, and their antifungal activity against Magnaporthe grisea, a pathogen of rice blast disease. J Nat Prod 68:1768–1772

    Article  PubMed  CAS  Google Scholar 

  • Tani H, Koshino H, Sakuno E, Cutler HG, Nakajima H (2006) Botcinins E and F and Botcinolide from Botrytis cinerea and structural revision of botcinolides. J Nat Prod 69:722–725

    Article  PubMed  CAS  Google Scholar 

  • Temme N, Tudzynski P (2009) Does Botrytis cinerea ignore H2O2-induced oxidative stress during infection? Characterization of Botrytis activator protein 1. Mol Plant Microbe Interact 22:987–998

    Article  PubMed  CAS  Google Scholar 

  • Tenberge KB, Beckedorf M, Hoppe B, Schouten A, Solf M, von den Driesch M (2002) In situ localization of AOS in host–pathogen interactions. Microsc Microanal 8(Suppl 2):250–251

    Google Scholar 

  • Thaning C, Nilsson HE (2000) A narrow range of wavelengths active in regulating apothecial development in Sclerotinia sclerotiorum. J Phytopathol 148:627–631

    Article  Google Scholar 

  • Townsend BB (1957) Nutritional factors influencing the production of sclerotia by certain fungi. Ann Bot 21:153–166

    Google Scholar 

  • Tudzynski P, Kokkelink L (2009) Botrytis cinerea: molecular aspects of a necrotrophic life style. In: Deising H (ed) The mycota V, plant relationships, 2nd edn. Springer, Berlin

    Google Scholar 

  • Van Kan JAL (2006) Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci 11:247–253

    Article  PubMed  Google Scholar 

  • Viaud M, Brunet-Simon A, Brygoo Y, Pradier JM, Levis C (2003) Cyclophilin A and calcineurin functions investigated by gene inactivation, cyclosporin A inhibition and cDNA arrays approaches in the phytopathogenic fungus Botrytis cinerea. Mol Microbiol 50:1451–1465

    Article  PubMed  CAS  Google Scholar 

  • Willetts HJ (1972) The morphogenesis and possible evolutionary origins of fungal sclerotia. Biol Rev 47:515–536

    Article  Google Scholar 

  • Williamson B, Duncan GH, Harrison JG, Harding LA, Elad Y, Zimand G (1995) Effect of humidity on infection of rose petals by dry-inoculated conidia of Botrytis cinerea. Mycol Res 99:1303–1310

    Article  Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, van Kan JAL (2007) Pathogen profile – Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Campbell M, Murphy J, Lam S, Xu JR (2000) The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact 13:724–732

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Brian Williamson for critical reading of the manuscript. Experimental work performed in our lab was funded by the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Schumacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schumacher, J., Tudzynski, P. (2012). Morphogenesis and Infection in Botrytis cinerea . In: Pérez-Martín, J., Di Pietro, A. (eds) Morphogenesis and Pathogenicity in Fungi. Topics in Current Genetics, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22916-9_11

Download citation

Publish with us

Policies and ethics