Skip to main content

On the Design of Low Redundancy Error-Correcting Output Codes

  • Chapter
Ensembles in Machine Learning Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 373))

Abstract

The classification of large number of object categories is a challenging trend in the Pattern Recognition field. In the literature, this is often addressed using an ensemble of classifiers . In this scope, the Error-Correcting Output Codes framework has demonstrated to be a powerful tool for combining classifiers. However, most of the state-of-the-art ECOC approaches use a linear or exponential number of classifiers, making the discrimination of a large number of classes unfeasible. In this paper, we explore and propose a compact design of ECOC in terms of the number of classifiers. Evolutionary computation is used for tuning the parameters of the classifiers and looking for the best compact ECOC code configuration. The results over several public UCI data sets and different multi-class Computer Vision problems show that the proposed methodology obtains comparable (even better) results than the state-of-the-art ECOC methodologies with far less number of dichotomizers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alamús, R., Baron, A., Bosch, E., Casacuberta, J., Miranda, J., Pla, M., Sànchez, S., Serra, A., Talaya, J.: On the accuracy and performance of the GeoMobil system. In: Proc. the 20th Congress Int. Soc. Photogrammetry and Remote Sens., Istanbul, Turkey, pp. 262–267 (2004)

    Google Scholar 

  2. Allwein, E., Schapire, R., Singer, Y.: Reducing multiclass to binary: A unifying approach for margin classifiers. J. Machine Learning Research 1, 113–141 (2002)

    MathSciNet  Google Scholar 

  3. Asuncion, A., Newman, D.J.: UCI machine learning repository, http://www.ics.uci.edu/~mlearn/MLRepository.html

  4. Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algorithm. In: Prieditis, A., Russel, S. (eds.) Proc. the 12th Int. Conf. Machine Learning, Tahoe City, CA, pp. 38–46. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  5. Crammer, K., Singer, Y.: On the learnability and design of output codes for multi-class problems. Machine Learning 47, 201–233 (2002)

    Article  MATH  Google Scholar 

  6. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Machine Learning Research 7, 1–30 (2006)

    MathSciNet  Google Scholar 

  7. Dietterich, T., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intel. Research 2, 263–286 (1995)

    MATH  Google Scholar 

  8. Dietterich, T., Kong, E.: Error-correcting output codes corrects bias and variance. In: Prieditis, A., Russell, S. (eds.) Proc. 12th Int. Conf. Machine Learning, Tahoe City, CA, pp. 313–321. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  9. Escalera, S., Pujol, O., Radeva, P.: On the decoding process in ternary error-correcting output codes. IEEE Trans. Pattern Analysis and Machine Intel. 32, 120–134 (2010)

    Article  Google Scholar 

  10. Escalera, S., Pujol, O., Radeva, P.: Error-correcting output codes library. J. Machine Learning Research 11, 661–664 (2010)

    Google Scholar 

  11. Fornés, A., Lladós, J., Sánchez, G.: Primitive segmentation in old handwritten music scores. In: Liu, W., Lladós, J. (eds.) GREC 2005. LNCS, vol. 3926, pp. 279–290. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of boosting. The Annals of Statistics 38, 337–374 (1998)

    MathSciNet  Google Scholar 

  13. Hastie, T., Tibshirani, R.: Classification by pairwise grouping. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Inf. Proc. Syst., vol. 10, pp. 507–513. MIT Press, Cambridge (1998)

    Google Scholar 

  14. Holland, J.H.: Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. MIT Press, Cambridge (1975)

    Google Scholar 

  15. Huang, G.B., Ramesh, M., Berg, T., Miller, E.L.: Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical Report, pp. 7–49. University of Massachusets, Amherst (2007)

    Google Scholar 

  16. Hwang, W., Weng, J., Zhang, Y.: Candid covariance-free incremental principal component analysis. IEEE Trans. Pattern Analysis and Machine Intel. 25, 1034–1040 (2003)

    Article  Google Scholar 

  17. Lorena, A.-C., de Carvalho, A.C.P.L.F.: Evolutionary tuning of svm parameter values in multiclass problems. Neurocomputing 71, 3326–3334 (2008)

    Article  Google Scholar 

  18. Martínez, A., Benavente, R.: The AR face database. Computer Vision Center Technical Report 24, University of Barcelona (1998)

    Google Scholar 

  19. Nilsson, N.J.: Learning machines: Foundations of trainable pattern-classifying systems. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  20. OSU-SVM-TOOLBOX, http://svm.sourceforge.net/

  21. Passerini, A., Pontil, M., Frasconi, P.: New results on error correcting output codes of kernel machines. IEEE Trans. Neural Networks 15, 45–54 (2004)

    Article  Google Scholar 

  22. Pujol, O., Radeva, P., Vitrià, J.: Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. IEEE Trans. Pattern Analysis and Machine Intel. 28, 1001–1007 (2006)

    Article  Google Scholar 

  23. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Machine Learning Research 5, 101–141 (2004)

    MathSciNet  Google Scholar 

  24. Utschick, W., Weichselberger, W.: Stochastic organization of output codes in multiclass learning problems. Neural Computation 13, 1065–1102 (2004)

    Article  Google Scholar 

  25. http://www.cis.temple.edu/latecki/research.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bautista, M.Á., Escalera, S., Baró, X., Pujol, O., Vitrià, J., Radeva, P. (2011). On the Design of Low Redundancy Error-Correcting Output Codes. In: Okun, O., Valentini, G., Re, M. (eds) Ensembles in Machine Learning Applications. Studies in Computational Intelligence, vol 373. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22910-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22910-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22909-1

  • Online ISBN: 978-3-642-22910-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics