Skip to main content

Gait Evolution for Humanoid Robot in a Physically Simulated Environment

  • Chapter
Intelligent Computer Graphics 2011

Part of the book series: Studies in Computational Intelligence ((SCI,volume 374))

Abstract

This article describes a bio-inspired system and the associated series of experiments, for the evolution of walking behavior in a simulated humanoid robot. A previous study has demonstrated the potential of this approach for evolving controllers based on simulated humanoid robots with a restricted range of movements. The development of anthropomorphic bipedal locomotion is addressed by means of artificial evolution using a genetic algorithm. The proposed task is investigated using full rigid-body dynamics simulation of a bipedal robot with 15 degrees of freedom. Stable bipedal gait with a velocity of 0.94 m/s is realized. Locomotion controllers are evolved from scratch, for example neither does the evolved controller have any a priori knowledge on how to walk, nor does it have any information about the kinematics structure of the robot. Instead, locomotion control is achieved based on intensive use of sensory information. In this work, the emergence of non-trivial walking behaviors is entirely due to evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azarbadegan, A., Broz, F., Nehaniv, C.L.: Evolving Simss Creatures for Bipedal Gait. In: IEEE Symposium on Artificial Life, Paris, France, April 11-15. Symposium series on computational intelligence, pp. 218–224 (2011)

    Google Scholar 

  2. Cheng, M.Y., Lin, C.S.: Genetic algorithm for control design of biped locomotion. Journal of Robotic Systems 14(5), 365–373 (1997)

    Article  MATH  Google Scholar 

  3. Clune, J., Ofria, C., Pennock, R.T.: How a generative encoding fares as problem regularity decreases. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 358–367. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated quadruped gaits with the hyperneat generative encoding. In: IEEE Congress on Evolutionary Computing (CEC), Trondheim, Norway, pp. 2674–2771 (2009)

    Google Scholar 

  5. Doerschuk, P.I., Simon, W.E., Nguyen, V., Li, A.: A Modular Approach to Intelligent Control of a Simulated Jointed Leg. IEEE Robotics and Automation Magazine 5(2), 12–21 (1998)

    Article  Google Scholar 

  6. Gallagher, J.C., Beer, R.D., Espenschied, K.S., Quinn, R.D.: Application of evolved locomotion controllers to a hexapod robot. Robotics and Autonomous Systems 19(1), 95–103 (1996)

    Article  Google Scholar 

  7. Elman, L.J.: Finding Structure in Time. Cognitive Science 14, 179–211 (1990)

    Article  Google Scholar 

  8. Gruau, F.: Automatic definition of modular neural networks. Adaptive Behavior 3(2), 151–183 (1995)

    Article  Google Scholar 

  9. Haykin, S.: Neural Networks: A comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  10. Holland, J.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1992)

    Google Scholar 

  11. Hornby, G.S., Lipson, H., Pollack, J.B.: Generative representations for the automated design of modular physical robots. IEEE Transactions on Robotics and Automation 19, 703–719 (2003)

    Article  Google Scholar 

  12. Hornby, G., Takamura, S., Tamamoto, T., Fujita, M.: Autonomous evolution of dynamic gaits with two quadruped robots. IEEE Transactions on Robotics 21(3), 402–410 (2005)

    Article  Google Scholar 

  13. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: The use of simulation in evolutionary robotics. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995)

    Google Scholar 

  14. Kun, A.L., Miller, W.T.: Control of variable speed gaits for a biped robot. IEEE Robotics and Automation Magazine 6(3), 19–29 (1999)

    Article  Google Scholar 

  15. Liu, H., Iba, H.: A hierarchical approach for adaptive humanoid robot control. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, Portland, Oregon, pp. 1546–1553, 20–23. IEEE Press, Los Alamitos (2004)

    Google Scholar 

  16. Miller III, W.T., Glanz, F.H., Kraft, L.G.: Application of a General Learning Algorithm to the Control of Robotic Manipulators. International Journal of Robotics Research 6(2), 84–98 (1987)

    Article  Google Scholar 

  17. Miller, W.T.: Real-Time Neural Network Control of a Biped Walking Robot. IEEE Control Systems Magazine, 41–48 (1994)

    Google Scholar 

  18. Pettersson, J., Sandholt, H., Wahde, M.: A flexible evolutionary method for the generation and implementation of behaviors for humanoid robots. In: Proceedings of the IEEE-RAS International Conference on Humanoid Robotic, Japan, November 22-24, pp. 279–286 (2001)

    Google Scholar 

  19. Shan, J., Junshi, C., Jiapin, C.: Design of central pattern generator for humanoid robot walking based on multi-objective GA. In: Proc. International Conference on Intelligent Robots and Systems (IROS 2000), vol. 3, pp. 1930–1935. IEEE-RSJ, Takamatsu (2000)

    Google Scholar 

  20. Sims, K.: Evolving 3D morphology and behavior by competition. Artificial Life 1(4), 353–372 (1994)

    Article  Google Scholar 

  21. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  22. Taga, G., Yamaguchi, Y., Shimizu, H.: Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment. Biological Cybernetics 65, 147–159 (1991)

    Article  MATH  Google Scholar 

  23. Takanishi, A., Ishid, M., Yamazaki, Y., Kato, I.: The realization of dynamic walking by the biped walking robot WL-10RD. In: Proceedings of the International Conference on Advanced Robotics (ICAR 1985), pp. 459–466 (1985)

    Google Scholar 

  24. Téllez, R.A., Angulo, C., Pardo, D.E.: Evolving the walking behaviour of a 12 DOF quadruped using a distributed neural architecture. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) BioADIT 2006. LNCS, vol. 3853, pp. 5–19. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  25. Valsalam, V.K., Miikkulainen, R.: Modular neuroevolution for multi-legged locomotion. In: GECCO 2008: Proceedings of the 10th annual conference on Genetic and Evolutionary Computation, pp. 265–272. ACM, New York (2008)

    Chapter  Google Scholar 

  26. Wang, H., Lee, T.T., Gruver, W.A.: A neuromorphic controller for a three-link biped robot. IEEE Transactions on Systems, Man and Cybernetics 22(1), 164–169 (1992)

    Article  Google Scholar 

  27. Wolff, K., Nordin, P.: Learning biped locomotion from first principles on a simulated humanoid robot using linear genetic programming. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 495–506. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  28. Ziegler, J., Barnholt, J., Busch, J., Banzhaf, W.: Automatic evolution of control programs for a small humanoid walking robot. In: Bidaud, P. (ed.) Proc. 5th International Conference on Climbing and Walking Robots (CLAWAR 2002), pp. 109–116. Professional Engineering Publishing (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ouannes, N., Djedi, N., Duthen, Y., Luga, H. (2012). Gait Evolution for Humanoid Robot in a Physically Simulated Environment. In: Plemenos, D., Miaoulis, G. (eds) Intelligent Computer Graphics 2011. Studies in Computational Intelligence, vol 374. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22907-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22907-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22906-0

  • Online ISBN: 978-3-642-22907-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics