Skip to main content

Modeling and Control of DC-AC Power Converters of Distributed Energy Resources in Microgrids

  • Chapter
Modeling and Control of Sustainable Power Systems

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The high penetration of power electronic interfaced distributed energy resources in microgrids raises several problems on the stability and power quality of microgrids. In this chapter, the modeling of DC-AC converters is discussed based on the characteristics of the MGs. The control techniques developed for DC-AC converters are briefly discussed. The capabilities and limits of these control methods are presented in order to enable the researchers to find suitable control strategy for a specified microgrid application. Finally, a performance test of microgrids is analyzed based on power quality and stability of microgrids. In this analysis, various scenarios are developed in order to examine the performance of the system. Some of the main issues which must be considered are discussed such as: 1) Power quality and regulation in the steady state operation, 2) Stability under low and medium frequency disturbances, 3) Stability under high frequency disturbances. This chapter is focused on the inner voltage and current controllers rather than power management of microgrids. The performance tests are developed in MATLAB/SIMULINK in which a more realistic performance of the system is tested using the SimPowerSystem Toolbox.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lasseter, R.H.: Microgrids. In: Proc. IEEE Power Eng. Soc. General Meeting, August 7, pp. 305–308 (2002)

    Google Scholar 

  2. Blaabjerg, F., Chen, Z., Kjaer, S.B.: Power Electronics as Efficient Interface in Dispersed Power Generation Systems. IEEE Trans. Power Electron 19(5), 1184–1194 (2004)

    Article  Google Scholar 

  3. Green, T.C., Prodanović, M.: Control of inverter-based micro-grids. Electrical Power Energy Syst. 77, 1204–1213 (2007)

    Article  Google Scholar 

  4. Prodanović, M., Green, T.C.: High-quality power generation through distributed control of a power park microgrid. IEEE Trans Ind. Electron 53(5) (2006)

    Google Scholar 

  5. Abdel-Rahim, N., Quaicoe, J.E.: Analysis and design of a multiple feedback loop control strategy for single-phase voltage-source ups inverters. IEEE Transactions on Power Electronics 11(4), 532–541 (1996)

    Article  Google Scholar 

  6. Jung, S.-L., Tzou, Y.-Y.: Discrete sliding-mode control of a pwm inverter for sinusoidal out-put waveform synthesis with optimal sliding curve. IEEE Transactions on Power Electronics 11(4), 567–577 (1996)

    Article  Google Scholar 

  7. Sofla, M.A., Gharehpetian, G.B.: Dynamic performance enhancement of microgrids by advanced sliding mode controller. International Journal of Electrical Power and Energy Systems 33(1), 1–7 (2011)

    Article  Google Scholar 

  8. Lee, T.S., Chiang, S.J., Chang, J.M.: H ∞  loop-shaping controller designs for the single-phase ups inverters. IEEE Transactions on Power Electronics 16(4), 473–481 (2001)

    Google Scholar 

  9. Dai, M., Marwali, M.N., Jung, J.-W., Keyhani, A.: A three-phase four-wire inverter control technique for a single distributed generation unit in island mode. IEEE Trans. Power Electronics 23(1), 322–331 (2008)

    Article  Google Scholar 

  10. Liang, J., Green, T.C., Weiss, G., Zhong, Q.-C.: Power electronics as efficient interface in dispersed power generation systems. In: Proc. IEEE Power Electron. Specialists Conf., pp. 1803–1808 (2002)

    Google Scholar 

  11. Lin, B.-R.: Analysis of neural and fuzzy-power electronic control. IEE Proc.-Sci. Meus. Technol. 144(1), 25–33 (1997)

    Article  Google Scholar 

  12. Mohamed, Y.A.I., El-Saadany, E.F.: Hybrid variable-structure control with evolutionary optimum-tuning algorithm for fast grid-voltage regulation using inverter- based distributed generation. IEEE Trans. Power Electronics 23(3), 1334–1341 (2008)

    Article  Google Scholar 

  13. Timbus, A., Liserre, M., Teodorescu, R., Rodriguez, P., Blaabjerg, F.: Evaluation of current controllers for distributed power generation systems. IEEE Trans. Power Electronics 24(3), 654–664 (2009)

    Article  Google Scholar 

  14. Serban, E., Serban, H.: A control strategy for a distributed power generation microgrid appli-cation with voltage- and current-controlled source converter. IEEE Trans. Power Electronics 25(12), 2981–2992 (2010)

    Article  Google Scholar 

  15. Mohamed, Y.A.I., El-Saadany, E.F.: Robust high bandwidth discrete-time predictive current control with predictive internal model-a unified approach for voltage-source pwm converters. IEEE Trans. Power Electronics 23(1), 126–136 (2008)

    Article  Google Scholar 

  16. Marwali, M., Keyhani, A.: Control of distributed generation systems-part I: Voltages and currents control. IEEE Trans. Power Electron 19(6), 1541–1550 (2004)

    Article  Google Scholar 

  17. Malesani, L., Tenti, P.: A novel hysteresis control method for current controlled VSI pwm inverters with constant modulation frequency. IEEE Trans. Ind. Applicat. 26(1), 88–92 (1990)

    Article  Google Scholar 

  18. Buhl, Lorenz, R.D.: Design and implementation of neural networks for digital current regu-lation of inverter drives. In: Proc. of Conf. Rec. IEEE-IAS Annu. Meeting, pp. 415–421 (1991)

    Google Scholar 

  19. Dzieniakowski, M.A., Kazmierkowski, M.P.: Self-tuned fuzzy pi current controller for pwm-vsi. In: Proc. EPE Conf., Seville, Spain, pp. 1308–1313 (1995)

    Google Scholar 

  20. Karimi, H., Davison, E.J., Iravani, R.: Multivariable Servomechanism Controller for Autonomous Operation of a Distributed Generation Unit: Design and Performance Evaluation. IEEE Trans. Power Syst. 25(2), 853–865 (2010)

    Article  Google Scholar 

  21. Chen, C.-L., Wang, Y., (Jason)Lai, J.-S., Lee, Y.-S., Martin, D.: Design of Parallel Inverters for Smooth Mode Transfer Microgrid Applications. IEEE Trans. Power Electron 25(1), 6–15 (2010)

    Article  Google Scholar 

  22. Li, Y.W., Vilathgamuwa, D.M., Loh, P.C.: Robust Control Scheme for a Microgrid With PFC Capacitor Connected. IEEE Trans. Ind. Applicat. 43(5), 1172–1182 (2007)

    Article  Google Scholar 

  23. Kim, J., Lee, J., Nam, K.: Inverter-Based Local AC Bus Voltage Control Utilizing Two DOF Control. IEEE Trans. Power Electron 23(3), 1288–1298 (2008)

    Google Scholar 

  24. Li, Y., Vilathgamuwa, D.M., Loh, P.C.: Design, Analysis, and Real-Time Testing of a Con-troller for Multibus Microgrid System. IEEE Trans. Power Electron 19(5), 1195–1204 (2004)

    Article  Google Scholar 

  25. Jurado, F., Valverde, M., Almonacid, B.: A Fuzzy Flux Control to Reduce Harmonics in the Utility Interface of Fuel Cell Power Systems. Electric Power Components and Systems 33(7), 781–800 (2005)

    Article  Google Scholar 

  26. Delghavi, M.B., Yazdani, A.: Islanded-Mode Control of Electronically Coupled Distributed-Resource Units Under Unbalanced and Nonlinear Load Conditions. IEEE Trans. Power Deliver 99 (2010)

    Google Scholar 

  27. Liserre, M., Teodorescu, R., Blaabjerg, F.: Multiple Harmonics Control for Three-Phase Grid Converter Systems With the Use of PI-RES Current Controller in a Rotating Frame. IEEE Trans. Power Electron 21(3), 836–841 (2006)

    Article  Google Scholar 

  28. Li, Y.W., Kao, C.-N.: An Accurate Power Control Strategy for Power-Electronics-Interfaced Distributed Generation Units Operating in a Low-Voltage Multibus Microgrid. IEEE Trans. Power Electron 24(12), 2977–2988 (2009)

    Article  Google Scholar 

  29. Huerta, J.M.E., Castelló-Moreno, J., Fischer, J.R., García-Gil, R.: A Synchronous Reference Frame Robust Predictive Current Control for Three-Phase Grid-Connected Inverters. IEEE Trans. Ind. Electron 57(3), 954–962 (2010)

    Article  Google Scholar 

  30. Kim, J., Lee, J., Nam, K.: Inverter-Based Local AC Bus Voltage Control Utilizing Two DOF Control. IEEE Trans. Power Electron 23(3), 1288–1298 (2008)

    Google Scholar 

  31. Tzou, Y.-Y., Jung, S.-L., Yeh, H.-C.: Adaptive Repetitive Control of PWM Inverters for Very Low THD AC-Voltage Regulation with Unknown Loads. IEEE Trans. Power Electron 15(5), 973–981 (1999)

    Article  Google Scholar 

  32. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. Taylor and Francis, Abington (1999)

    Google Scholar 

  33. Sofla, M.A., Radan, A.: Robust nonlinear Method to Control Micro-Grids. International Journal of Integrated Energy Systems 1(1), 65–69 (2009), Serial Publication

    Google Scholar 

  34. Harashima, F., Demizu, Y., Kondo, S., Hashimoto, H.: Application of neural networks to power converter control. In: Conf. Rec. IEEE-IAS Annu. Meeting, San Diego, CA, pp. 1087–1091 (1989)

    Google Scholar 

  35. Trzynadlowski, A.M., Legowski, S.: Application of neural networks to the optimal control of three-phase voltage-controlled inverters. IEEE Trans. Power Electron 9(4), 397–404 (1994)

    Article  Google Scholar 

  36. Mohamed, Y.A.I., El-Saadany, E.F.: Adaptive Discrete-Time Grid-Voltage Sensorless In-terfacing Scheme for Grid-Connected DG-Inverters Based on Neural-Network Identification and Deadbeat Current Regulation. IEEE Trans. Power Electron 23(1), 308–321 (2008)

    Article  Google Scholar 

  37. Hilloowala, R.M., Sharaf, A.M.: A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme. IEEE Trans. Ind. Applicat. 32(1), 57–65 (1996)

    Article  Google Scholar 

  38. Naguib, M.F., Lopes, L.: Harmonics Reduction in Current Source Converters Using Fuzzy Logic. IEEE Trans. Power Electron 25(1), 158–167 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sofla, M.A., Wang, L., King, R. (2012). Modeling and Control of DC-AC Power Converters of Distributed Energy Resources in Microgrids. In: Wang, L. (eds) Modeling and Control of Sustainable Power Systems. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22904-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22904-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22903-9

  • Online ISBN: 978-3-642-22904-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics