Solitons on the Boundaries of Microscopic Systems

  • Andrei LuduEmail author
Part of the Springer Series in Synergetics book series (SSSYN)


In this chapter, we focus on some applications of soliton theory in microscopic compact systems with boundary, like nuclei or quantum Hall liquids. At this space scale, the solitons correspond to solutions of field equations with finite energy and with a localized, nondispersive energy density. Since the field theories describing many-body systems of elementary particles are quantum theories, one should perform the so-called quantization of solitons procedure. This is done in principle by using a semiclassical expansion to associate with a classical soliton solution both a quantum soliton-particle states, and a whole series of excited state by quantizing the fluctuations around the soliton. Since the soliton solutions are nonperturbative, their quantum versions are themselves nonperturbative [267, 161].


Solitary Wave Soliton Solution Shell Correction Nuclear Surface Liquid Drop Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of MathematicsEmbry-Riddle Aeronautical UniversityDaytona BeachUSA

Personalised recommendations