Skip to main content

On Fast Deep Nets for AGI Vision

  • Conference paper
Artificial General Intelligence (AGI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6830))

Included in the following conference series:

Abstract

Artificial General Intelligence will not be general without computer vision. Biologically inspired adaptive vision models have started to outperform traditional pre-programmed methods: our fast deep / recurrent neural networks recently collected a string of 1st ranks in many important visual pattern recognition benchmarks: IJCNN traffic sign competition, NORB, CIFAR10, MNIST, three ICDAR handwriting competitions. We greatly profit from recent advances in computing hardware, complementing recent progress in the AGI theory of mathematically optimal universal problem solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behnke, S.: Hierarchical Neural Networks for Image Interpretation. LNCS, vol. 2766. Springer, Heidelberg (2003)

    Book  MATH  Google Scholar 

  2. Ciresan, D.C., Meier, U., Gambardella, L.M., Schmidhuber, J.: Deep big simple neural nets for handwritten digit recogntion. Neural Computation 22(12), 3207–3220 (2010)

    Article  Google Scholar 

  3. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: High-performance neural networks for visual object classification. arxiv 1102.0183 (2011)

    Google Scholar 

  4. Ciresan, D.C., Meier, U., Masci, J., Schmidhuber, J.: A committee of neural networks for traffic sign classification. In: International Joint Conference on Neural Networks to appear (2011)

    Google Scholar 

  5. Fukushima, K.: Neocognitron: A self-organizing neural network for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193–202 (1980)

    Article  MATH  Google Scholar 

  6. Fukushima, K.: Neocognitron for handwritten digit recognition. Neurocomputing 51, 161–180 (2003)

    Article  Google Scholar 

  7. Graves, A., Fernández, S., Schmidhuber, J.: Multi-dimensional recurrent neural networks. In: Proceedings of the 17th International Conference on Artificial Neural Networks (September 2007)

    Google Scholar 

  8. Graves, A., Schmidhuber, J.: Offline handwriting recognition with multidimensional recurrent neural networks. In: Advances in Neural Information Processing Systems, vol. 21, MIT Press, Cambridge (2009)

    Google Scholar 

  9. Hochreiter, S., Schmidhuber, J.: Flat minima. Neural Computation 9(1), 1–42 (1997)

    Article  MATH  Google Scholar 

  10. Hutter, M.: Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Springer, Berlin (2004); (On J. Schmidhuber’s SNF grant 20-61847)

    Google Scholar 

  11. Krizhevsky, A.: Learning multiple layers of features from tiny images. Master’s thesis, Computer Science Department, University of Toronto (2009)

    Google Scholar 

  12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  13. LeCun, Y., Huang, F.J., Bottou, L.: Learning methods for generic object recognition with invariance to pose and lighting. In: Proc. of Computer Vision and Pattern Recognition Conference (2004)

    Google Scholar 

  14. Mitchell, T.: Machine Learning. McGraw Hill, New York (1997)

    MATH  Google Scholar 

  15. Newell, A., Simon, H.: GPS, a program that simulates human thought. In: Feigenbaum, E., Feldman, J. (eds.) Computers and Thought, pp. 279–293. McGraw-Hill, New York (1963)

    Google Scholar 

  16. Rosenbloom, P.S., Laird, J.E., Newell, A.: The SOAR Papers. MIT Press, Cambridge (1993)

    Google Scholar 

  17. Scherer, D., Müller, A., Behnke, S.: Evaluation of pooling operations in convolutional architectures for object recognition. In: International Conference on Artificial Neural Networks (2010)

    Google Scholar 

  18. Schmidhuber, J.: Learning factorial codes by predictability minimization. Neural Computation 4(6), 863–879 (1992)

    Article  Google Scholar 

  19. Schmidhuber, J.: The new AI: General & sound & relevant for physics. In: Goertzel, B., Pennachin, C. (eds.) Artificial General Intelligence, pp. 175–198. Springer, Heidelberg (2006); also available as TR IDSIA-04-03, arXiv:cs.AI/0302012

    Google Scholar 

  20. Schmidhuber, J.: New millennium AI and the convergence of history. In: Duch, W., Mandziuk, J. (eds.) Challenges to Computational Intelligence. Studies in Computational Intelligence, vol. 63, pp. 15–36. Springer, Heidelberg (2007); arXiv:cs.AI/0606081

    Chapter  Google Scholar 

  21. Schmidhuber, J.: Ultimate cognition à la Gödel. Cognitive Computation 1(2), 177–193 (2009)

    Article  Google Scholar 

  22. Schmidhuber, J., Eldracher, M., Foltin, B.: Semilinear predictability minimization produces well-known feature detectors. Neural Computation 8(4), 773–786 (1996)

    Article  Google Scholar 

  23. Schmidhuber, J., Huber, R.: Learning to generate artificial fovea trajectories for target detection. International Journal of Neural Systems 2(1 & 2), 135–141 (1991)

    Article  Google Scholar 

  24. Schraudolph, N.N., Eldracher, M., Schmidhuber, J.: Processing images by semi-linear predictability minimization. Network: Computation in Neural Systems 10(2), 133–169 (1999)

    Article  Google Scholar 

  25. Simard, P., Steinkraus, D., Platt, J.: Best practices for convolutional neural networks applied to visual document analysis. In: Seventh International Conference on Document Analysis and Recognition, pp. 958–963 (2003)

    Google Scholar 

  26. Utgoff, P.: Shift of bias for inductive concept learning. In: Michalski, R., Carbonell, J., Mitchell, T. (eds.) Machine Learning, vol. 2, pp. 163–190. Morgan Kaufmann, Los Altos (1986)

    Google Scholar 

  27. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schmidhuber, J., Cireşan, D., Meier, U., Masci, J., Graves, A. (2011). On Fast Deep Nets for AGI Vision. In: Schmidhuber, J., Thórisson, K.R., Looks, M. (eds) Artificial General Intelligence. AGI 2011. Lecture Notes in Computer Science(), vol 6830. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22887-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22887-2_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22886-5

  • Online ISBN: 978-3-642-22887-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics