Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 395 Accesses

Abstract

Neural cell adhesion, viz. the early stages following seeding on the substrate in vitro, involves shape modification leading to dendrite outgrowth, and appears important for guiding neuronal network formation. Electric fields have been extensively used to favor neurites (axons and dendrites) development and alignment in vitro [19]. Electric fields can also stimulate the repair of nerve injuries in both the peripheral and central nervous system in animal models [10, 11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patel NB, Poo M-M (1982) J Neurosci 2:483–496

    CAS  Google Scholar 

  2. Patel NB, Poo M-M (1984) J Neurosci 4:2939–2947

    CAS  Google Scholar 

  3. Al-Majed AA, Neumann MC, Brushart TM, Gordon T (2000) J Neurosci 20:2602–2608

    CAS  Google Scholar 

  4. McCaig CD, Zhao M (1997) BioEssays 19:819–826

    Article  CAS  Google Scholar 

  5. Erskine L, McCaig CD (1995) Dev Biol 171:330–339

    Article  CAS  Google Scholar 

  6. Greenebaum B, Sutton CH, Vadula MS, Battocletti JH, Swiontek T, DeKeyser J, Sisken BF (1996) Bioelectromagnetics 17:293–302

    Article  CAS  Google Scholar 

  7. McCaig CD, Sangster L, Stewart R (2000) Dev Dyn 217:299–308

    Article  CAS  Google Scholar 

  8. Zhang Y, Ding J, Duan W, Fan W (2005) Bioelectromagnetics 26:406–411

    Article  CAS  Google Scholar 

  9. Liopo A, Stewart MP, Hudson J, Tour JM, Pappas T (2006) J Nanosci Nanotechnol 6:1365–1374

    Article  CAS  Google Scholar 

  10. Sisken BF, Kanje M, Lundorg G, Herbst E, Kurtz W (1989) Brain Res 485:309–316

    Article  CAS  Google Scholar 

  11. Borgens RB, Toombs JP, Breur G, Widmer WR, Waters D, Harbath AM, March P, Adams LG (1999) J Neurotrauma 16:639–657

    Article  CAS  Google Scholar 

  12. Voldman J (2006) Annu Rev Biomed Eng 8:425–454

    Article  CAS  Google Scholar 

  13. Mattson M, Haddon R, Rao AM (2000) J Mol Neurosci 14:175–182

    Article  CAS  Google Scholar 

  14. Hu H, Ni Y, Montana V, Haddon RC, Parpura V (2004) Nano Lett 4:507–511

    Article  CAS  Google Scholar 

  15. Hu H, Ni Y, Mandal SK, Montana V, Zhao B, Haddon RC, Parpura V (2005) J Phys Chem B Lett 109:4285–4289

    CAS  Google Scholar 

  16. Harrison S, Atala A (2007) Biomaterials 28:344–353

    Article  CAS  Google Scholar 

  17. Zhang X, Prasad S, Niyogi S, Morgan A, Ozkan M, Ozkan CS (2005) Sens Actuators B 106:843–850

    Article  Google Scholar 

  18. Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L (2005) Nano Lett 5:1107–1110

    Article  CAS  Google Scholar 

  19. Gheith MK, Pappas T, Liopo V, Sinani VA, Shim BS, Motamedi M, Kotov NA (2006) Adv Mater 18:2975–2979

    Article  CAS  Google Scholar 

  20. Mazzatenta A, Giugliano M, Campidelli S, Gambazzi L, Businaro L, Markramm H, Prato M, Ballerini L (2007) J Neurosci 27:6931–6936

    Article  CAS  Google Scholar 

  21. Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, Gambazzi L, Markram H, Grandolfo M, Scaini D, Gelain F, Casalis L, Prato M, Giuliano M, Ballerini L (2009) Nat Nanotechnol 4:126–133

    Article  CAS  Google Scholar 

  22. Galvan-Garcia P, Keefer EW, Yang F, Zhang M, Fang S, Zakhidov AA, Baughman RH, Romero MI (2007) J Biomater Sci Polym Ed 18:1245–1261

    Article  CAS  Google Scholar 

  23. Graeter SV, Huang J, Perschmann N, Lopez-Garcia M, Kessler H, Ding J, Spatz J (2007) Nanoletters 7:1413–1418

    CAS  Google Scholar 

  24. Bystrenova E, Jelitai M, Tonazzini I, Lazar AN, Huth M, Stoliar P, Dionigi C, Cacace MG, Nickel B, Madarasz E, Biscarini F (2008) Adv Funct Mater 18:1751–1756

    Article  CAS  Google Scholar 

  25. Dionigi C, Stoliar P, Ruani G, Quiroga SD, Facchini M, Biscarini F (2007) J Mater Chem 17:3681–3686

    Article  CAS  Google Scholar 

  26. Furtado CA, Kim UJ, Gutierrez H, Pan L, Dickey EC, Eklund PC (2004) J Am Chem Soc 126:6095

    Article  CAS  Google Scholar 

  27. Hrenovic J, Ivankovic T (2007) Cent Eur J Biol 2:405–414

    Article  CAS  Google Scholar 

  28. Chen RJ, Zhang Y, Wang D, Dai H (2001) J Am Chem Soc 123:3838–3839

    Article  CAS  Google Scholar 

  29. Zhao X, Xia Y, Whitesides GM (1997) J Mater Chem 7:1069–1074

    Article  CAS  Google Scholar 

  30. Cavallini M, Albonetti C, Biscarini F (2009) Adv Mater 21:1043–1053

    Article  CAS  Google Scholar 

  31. Massi M, Cavallini M, Biscarini F (2009) Surf Sci 603:503–506

    Article  CAS  Google Scholar 

  32. Massi M, Cavallini M, Stagni S, Palazzi A, Biscarini F (2003) Mater Sci Eng C Biomimetic Supramol Syst 23:923–925

    Article  Google Scholar 

  33. Cavallini M, Biscarini F, Massi M, Morales AF, Leigh DA, Zerbetto F (2002) Nano Lett 2:635–639

    Article  CAS  Google Scholar 

  34. Mendes PM (2008) Chem Soc Rev 37:2512–2529

    Article  CAS  Google Scholar 

  35. Patolsky F, Timko BP, Yu GH, Fang Y, Greytak AB, Lieber CM (2006) Science 313:1100–1104

    Article  CAS  Google Scholar 

  36. Dionigi C, Stoliar P, Porzio W, Destri S, Cavallini M, Bilotti I, Brillante A, Biscarini F (2007) Langmuir 23:2030–2036

    Article  CAS  Google Scholar 

  37. Celio H, Barton E, Stevenson KJ (2006) Langmuir 22:11426–11435

    Article  CAS  Google Scholar 

  38. Valentini L, Taticchi A, Marrocchi A, Kenny JM (2008) J Mater Chem 18:484–488

    Article  CAS  Google Scholar 

  39. Low SP, Williams KA, Canham LT, Voelcker NH (2006) Biomaterials 27:4538–4546

    Article  CAS  Google Scholar 

  40. Cavallini M, Serban DA, Greco P, Melinte S, Vlad A, Dutu CA, Zacchini S, Iapalucci MC, Biscarini F (2009) Small 5:1117–1122

    Google Scholar 

  41. Greco P, Cavallini M, Stoliar P, Quiroga SD, Dutta S, Zacchini S, Iapalucci MC, Morandi V, Milita S, Merli PG, Biscarini F (2008) J Am Chem Soc 130:1177–1182

    Article  CAS  Google Scholar 

  42. Femoni C, Kaswalder F, Iapalucci MC, Longoni G, Mehlstaubl M, Zacchini S (2005) Chem Commun 46:5769–5771

    Article  Google Scholar 

  43. Shen JY, Chan-Park MB, He B, Zhu AP, Zhu X, Beuerman RW, Yang EB, Chen W, Chan V (2006) Tissue Eng 12:2229–2240

    Article  CAS  Google Scholar 

  44. Thakar RG, Ho F, Huang NF, Liepmann D, Li S (2003) Biochem Biophys Res Commun 307:883–890

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Bianchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bianchi, M. (2011). Control of Neural Cell Adhesion on 3D-SWCNT. In: Multiscale Fabrication of Functional Materials for Regenerative Medicine. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22881-0_5

Download citation

Publish with us

Policies and ethics