Skip to main content

Some Curvature Problems in Semi-Riemannian Geometry

  • Conference paper
  • First Online:
  • 2787 Accesses

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 17))

Abstract

In this survey article we review several results on the curvature of semi-Riemannian metrics which are motivated by the positive mass theorem and have been obtained within the Priority Program “Globale Differentialgeometrie” of the Deutsche Forschungsgemeinschaft. The main themes are estimates of the Riemann tensor of an asymptotically flat manifold and the construction of Lorentzian metrics which satisfy the dominant energy condition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnowitt, R., Deser, S., Misner, C.W.: Energy and the criteria for radiation in general relativity. Phys. Rev. 118(2), 1100–1104 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-riemannian and spin geometry. Math. Z. 249, 545–580 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bartnik, R.: The mass of an asymptotically flat manifold. Comm. Pure Appl. Math. 39(5), 661–693 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bernal, A.N., Sánchez, M.: Smoothness of time functions and the metric splitting of globally hyperbolic spacetimes. Comm. Math. Phys. 257, 43–50 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bray, H.L.: Proof of the riemannian penrose inequality using the positive mass theorem. J. Differential Geom. 59(2), 177–267 (2001)

    MATH  MathSciNet  Google Scholar 

  6. Bray, H.L., Finster, F.: Curvature estimates and the positive mass theorem, arXiv:math/9906047 [math.DG]. Comm. Anal. Geom. 10(2), 291–306 (2002)

    Google Scholar 

  7. Donaldson, S.K.: The orientation of yang-mills moduli spaces and 4-manifold topology. J. Differential Geom. 26, 397–428 (1987)

    MATH  MathSciNet  Google Scholar 

  8. Eliashberg, Y., Mishachev, N.: Introduction to the h-principle. vol. 48 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (2002)

    Google Scholar 

  9. Finster, F.: A level set analysis of the Witten spinor with applications to curvature estimates. arXiv:math/0701864 [math.DG], Math. Res. Lett. 16(1), 41–55 (2009)

    Google Scholar 

  10. Finster, F., Kath, I.: Curvature estimates in asymptotically flat manifolds of positive scalar curvature. arXiv:math/0101084 [math.DG], Comm. Anal. Geom. 10(5), 1017–1031 (2002)

    Google Scholar 

  11. Finster, F., Kraus, M.: Curvature estimates in asymptotically flat Lorentzian manifolds. arXiv:math/0306159 [math.DG], Canad. J. Math. 57(4), 708–723 (2005)

    Google Scholar 

  12. Finster, F., Kraus, M.: A weighted L 2-estimate of the Witten spinor in asymptotically Schwarzschild manifolds, arXiv:math/0501195 [math.DG], Canad. J. Math. 59(5), 943–965 (2007)

    Google Scholar 

  13. Geroch, R.P.: Topology in general relativity, J. Math. Phys. 8, 782–786 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ginoux, N.: The Dirac spectrum. Lecture Notes in Mathematics, vol. 1976, Springer, Berlin (2009)

    Google Scholar 

  15. Gromov, M.: Partial differential relations, vol. 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer, Berlin (1986)

    Google Scholar 

  16. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time, Cambridge Monographs on Mathematical Physics, No. 1. Cambridge University Press, London (1973)

    Google Scholar 

  17. Hirsch, M.W.: Differential topology, vol. 33 of Graduate Texts in Mathematics. Springer, New York (1994); Corrected reprint of the 1976 original.

    Google Scholar 

  18. Hirzebruch, F., Hopf, H.: Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten. Math. Ann. 136, 156–172 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  19. Huisken, G., Ilmanen, T.: The inverse mean curvature flow and the Riemannian Penrose inequality. J. Differential Geom. 59(3), 353–437 (2001)

    MATH  MathSciNet  Google Scholar 

  20. Lawson, H.B. Jr., Michelsohn, M.-L.: Spin geometry. Princeton Mathematical Series, vol. 38, Princeton University Press, Princeton, NJ (1989)

    Google Scholar 

  21. Maerten, D.: Positive energy-momentum theorem for AdS-asymptotically hyperbolic manifolds, Ann. Henri Poincaré 7, 975–1011 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mars, M.: Present status of the penrose inequality. arXiv:0906.5566 [gr-qc] (2009)

    Google Scholar 

  23. Nardmann, M.: Pseudo-Riemannian metrics with prescribed scalar curvature, PhD thesis at the University of Leipzig. arXiv:math/0409435 [math.DG]

    Google Scholar 

  24. Nardmann, M.: Nonexistence of spacelike foliations and the dominant energy condition in Lorentzian geometry. arXiv:math/0702311 [math.DG]

    Google Scholar 

  25. Nardmann, M.: A remark on the rigidity case of the positive mass theorem. arXiv:1004.5430 [math.DG]

    Google Scholar 

  26. Nardmann, M.: A C 0, α-dense h-principle for negative scalar curvature of semi-Riemannian metrics, in preparation

    Google Scholar 

  27. Parker, T., Taubes, C.H.: On Witten’s proof of the positive energy theorem, Comm. Math. Phys. 84(2), 223–238 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. Reinhart, B.L.: Cobordism and the euler number. Topology 2, 173–177 (1963)

    MATH  MathSciNet  Google Scholar 

  29. Schoen, R., Yau, S.-T.: On the proof of the positive mass conjecture in general relativity, Comm. Math. Phys. 65(1), 45–76 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  30. Schoen, R., Yau, S.-T.: Proof of the positive mass theorem. II. Comm. Math. Phys. 79(2), 231–260 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schrödinger, E.: Diracsches Elektron im Schwerefeld I. Sitzungsbericht der Preussischen Akademie der Wissenschaften Phys.-Math. Klasse 1932, Verlag der Akademie der Wissenschaften, 436–460 (1932)

    Google Scholar 

  32. Spring, D.: Convex integration theory. Solutions to the h-principle in geometry and topology. vol. 92 of Monographs in Mathematics, Birkhäuser, Basel (1998)

    Google Scholar 

  33. Thurston, W.P.: Existence of codimension-one foliations. Ann. of Math. 104(2), 249–268 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  34. Thurston, W.P.: Three-dimensional geometry and topology. Vol. 1, vol. 35 of Princeton Mathematical Series, Princeton University Press, Princeton, NJ (1997)

    Google Scholar 

  35. Tipler, F.J.: Singularities and causality violation, Ann. Phys. 108, 1–36 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  36. Varela, F.: Formes de Pfaff, classe et perturbations. Ann. Inst. Fourier (Grenoble) 26, 239–271 (1976)

    Google Scholar 

  37. Witten, E.: A new proof of the positive energy theorem. Comm. Math. Phys. 80(3), 381–402 (1981)

    Article  MathSciNet  Google Scholar 

  38. Yodzis, P.: Lorentz cobordism. Comm. Math. Phys. 26, 39–52 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  39. Yodzis, P.: Lorentz cobordism. II, General relativity and gravitation. 4, 299–307 (1973)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Margarita Kraus for helpful comments on the manuscript. Supported in part by the Deutsche Forschungsgemeinschaft within the Priority Program “Globale Differentialgeometrie.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Finster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Finster, F., Nardmann, M. (2012). Some Curvature Problems in Semi-Riemannian Geometry. In: Bär, C., Lohkamp, J., Schwarz, M. (eds) Global Differential Geometry. Springer Proceedings in Mathematics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22842-1_8

Download citation

Publish with us

Policies and ethics