Skip to main content

Holonomy Groups of Lorentzian Manifolds: A Status Report

  • Conference paper
  • First Online:
Global Differential Geometry

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 17))

Abstract

In this survey we review the state of art in Lorentzian holonomy theory. We explain the recently completed classification of connected Lorentzian holonomy groups, we describe local and global metrics with special Lorentzian holonomy and some topological properties, and we discuss the holonomy groups of Lorentzian manifolds with parallel spinors as well as Lorentzian Einstein metrics with special holonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseevsky, D., Cortés, V., Galaev, A., Leistner, T.: Cones over pseudo-Riemannian manifolds and their holonomy. J. Reine Angew. Math. 635, 23–69 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bär, C.: Real Killing spinors and holonomy. Comm. Math. Phys. 154(3), 509–521 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249, 545–580 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bär, C., Ginoux, N, Pfäffle, F.: Wave Equations on Lorentzian Manifolds and Quantization. EMS Publishing House, Switzerland (2007)

    Google Scholar 

  5. Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudo-Riemannschen Mannigfaltigkeiten. Teubner, Leipzig (1981)

    Google Scholar 

  6. Baum, H.: Complete Riemannian manifolds with imaginary Killing spinors. Ann. Global Anal. Geom. 7, 205–226 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Baum, H., Friedrich, T., Grunewald, R., Kath, I.: Twistors and Killing Spinors on Riemannian Manifolds. Teubner-Texte zur Mathematik, vol. 124. Teubner, Stuttgart/Leipzig (1991)

    Google Scholar 

  8. Baum, H., Kath, I.: Parallel spinors and holonomy groups on pseudo-Riemannian spin manifolds. Ann. Global Anal. Geom. 17, 1–17 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Baum, H.: Twistor spinors on Lorentzian symmetric spaces. J. Geom. Phys. 34, 270–286 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Baum, H., Müller, O.: Codazzi spinors and globally hyperbolic manifolds with special holonomy. Math. Z. 258(1), 185–211 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Baum, H.: Eichfeldtheorie. Eine Einführung in die Differentialgeometrie auf Faserbündeln. Springer, Hiedelberg (2009)

    Book  MATH  Google Scholar 

  12. Baum, H, Juhl, A.: Conformal Differential Geometry. Q-Curvature and Holonomy. Oberwolfach-Seminars, vol. 40, Birkhäuser, Basel (2010)

    Google Scholar 

  13. Bazaikin, Ya.V.: Globally hyperbolic Lorentzian manifolds with special holonomy. Siberian Math. J. 50(4), 567–579 (2009)

    Google Scholar 

  14. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian Geometry. Monographs and Textbooks in Pure and Applied Mathematics, vol. 202. Dekker Inc., New York (1996)

    Google Scholar 

  15. Berard-Bergery, L., Ikemakhen, A.: On the holonomy of Lorentzian manifolds. In: Greene, R., Yau, S.T. (eds.) Differential Geometry: Geometry in Mathematical Physics and Related Topics, Proceedings of Symposia in Pure Mathematics, vol. 54, pp. 27–40. American Mathematical Society, Providence (1993)

    Google Scholar 

  16. Berger, M.: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)

    MATH  MathSciNet  Google Scholar 

  17. Berger, M.: Les espaces symétriques non compactes. Ann. École Norm. Sup. 74, 85–177 (1957)

    Google Scholar 

  18. Bernal, A.N., Sánchez, M.: Smoothness of time function and the metric spitting of globally hyperbolic spacetimes. Comm. Math. Phys. 257, 43–50 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Besse, A.L.: Einstein Manifolds. Springer, New York (1987)

    MATH  Google Scholar 

  20. Bezvitnaya, N.: Lightlike foliations on Lorentzian manifolds with weakly irreducible holonomy algebra. ArXiv:math/0506101v1 (2005)

    Google Scholar 

  21. Brannlund, J., Coley, A., Hervik, S.: Supersymmetry, holonomy and Kundt spacetimes. Classical Quant. Grav. 25, 195007, 10 pp (2008)

    Google Scholar 

  22. Brannlund, J., Coley, A., Hervik, S.: Holonomy, decomposability, and relativity. Can. J. Phys. 87, 241–243 (2009)

    Article  Google Scholar 

  23. Bryant, R.: Classical, exceptional, and exotic holonomies: a status report. Séminaires & Congrès, Soc. Math. France 1, 93–165 (1996)

    Google Scholar 

  24. Bryant, R.: Recent advances in the theorey of holonomy. Séminaire Bourbaki, Asterisque 51, 525–576 (1999)

    Google Scholar 

  25. Bryant, R.: Pseudo-Riemannian metrics with parallel spinor fields and vanishing Ricci tensor. Global Analysis and Harmonic Analysis, Seminairs et Congress 4, 53–93 (2000)

    Google Scholar 

  26. Cahen, M., Kerbrat, Y.: Champs de vecteurs conformes et transformations conformes des spaces Lorentzian symetriques. J. Math. Pure Appl. 57, 99–132 (1978)

    MATH  MathSciNet  Google Scholar 

  27. Cahen, M., Parker, M.: Pseudo-Riemannian symmetric spaces. Memoir. Am. Math. Soc. 24(1980)

    Google Scholar 

  28. Cahen, M., Wallach, N.: Lorentzian symmetric spaces. Bull. Am. Math. Soc. 76, 585–591 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  29. Cahen, M., Leroy, J., Parker, M., Tricerri, F., Vanhecke, L.: Lorentzian manifolds modelled on a Lorentz symmetric space. J. Geom. Phys. 7(4), 571–581 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  30. Candela, A.M., Flores, J.L., Sánchez, M.: On general plane fronted waves. Geodesics. Gen. Relat. Gravit. 35(4), 631–649 (2003)

    Article  MATH  Google Scholar 

  31. Cartan, E.: La Geometrie des Espaces de Riemann. Memorial des Sciences Mathematiques, Fasc. IX, Ch. VII, Sec. II (1925)

    Google Scholar 

  32. Cartan, E.: Sur une classe remarquable d’espaces de Riemann. Bull. Soc. Math. France 54, 214–264 (1926)

    MathSciNet  Google Scholar 

  33. Cartan, E.: Les groups d’holonomie des espaces généralisés. Acta Math. 48, 1–42 (1926)

    Article  MATH  Google Scholar 

  34. Coley, A., Fuster, A., Hervik, S.: Supergravity solutions with constant scalar invariants. Int. J. Mod. Phys. 24, 1119–1133 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. De Rham, G.: Sur la réductibilité d’un espace de Riemann. Comm. Math. Helv. 26, 328–344 (1952)

    Article  MATH  Google Scholar 

  36. Di Scala, A., Olmos, C.: The geometry of homogeneous submanifolds of hyperbolic space. Math. Z. 237, 199–209 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  37. Figueroa-O’Farrill, J.: More Ricci-flat branes. Phys. Lett. B 471, 128–132 (1999)

    Google Scholar 

  38. Figueroa-O’Farrill, J.: Breaking the M-wave. Classical Quant. Grav. 17, 2925–2947 (2000)

    Google Scholar 

  39. Flores, J.L., Sánchez, M.: Causality and conjugated points in general plane waves. Classical Quant. Grav. 20, 2275–2291 (2003)

    Article  MATH  Google Scholar 

  40. Galaev, A.: The space of curvature tensors for holonomy algebras of Lorentzian manifolds. Differ. Geom. Appl. 22(1), 1–18 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  41. Galaev, A.: Isometry groups of Lobachewskian spaces, similarity transformation groups of Euclidian spaces and Lorentzian holonomy groups. Rend. Circ. Mat. Palermo (2)(Suppl. 79), 87–97 (2006).

    Google Scholar 

  42. Galaev, A.: Metrics that realize all Lorentzian holonomy algebras. Int. J. Geomet. Meth. Mod. Phys. 3, 1025–1045 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Galaev, A., Leistner, T.: Holonomy groups of Lorentzian manifolds: classification, examples, and applications. In: Alekseevsky, D., Baum, H. (eds.) Recent Developments in Pseudo-Riemannian Geometry, pp. 53–96. EMS Publishing House, Switzerland (2008)

    Chapter  Google Scholar 

  44. Galaev, A., Leistner, T.: On the local structure of Lorentzian Einstein manifolds with parallel null line. Classical Quant. Grav. 27, 225003 (2010)

    Article  MathSciNet  Google Scholar 

  45. Galaev, A.: On one component of the curvature tensor of a Lorentzian manifold. J. Geom. Phys. 60, 962–971 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  46. Galaev, A.: Examples of Einstein spacetimes with recurrent light-like vector fields. arXiv:1004.1934v1 (2010)

    Google Scholar 

  47. Galaev, A.: Holonomy of Einstein Lorentzian manifolds. Class. Quant. Grav. 27, 075008, 13 pp (2010)

    Google Scholar 

  48. Gallot, S.: Équations differentielles caractéristiques de la sphère. Ann. Sci. École Norm. Sup. (4) 12(2), 235–267 (1979)

    Google Scholar 

  49. Ghanam, R., Thompson, G.: Two special metrics with R 14-type holonomy. Classical Quant. Grav. 18(11), 2007–2014 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  50. Gibbons, G.W., Pope, C.N.: Time-dependent multi-center solutions from new metrics with holonomy Sim(n − 2). Classical Quant. Grav. 25, 125015, 21 pp (2008)

    Google Scholar 

  51. Gibbons, G.W.: Holonomy old and new. Progr. Theor. Phys. Suppl. (177), 33–41 (2009)

    Article  MATH  Google Scholar 

  52. Hall, G.S.: Space-times and holonomy groups. In: Differential Geometry and Its Applications. Proceedings of the 5th International Conference, Opava, August 24–28, pp. 201–210. Silesian University (1993)

    Google Scholar 

  53. Hall, G.S., Lonie, D.P.: Holonomy groups and spacetimes. Classical Quant. Grav. 17(6):1369–1382 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  54. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Graduate Studies in Mathematics, vol. 34. American Mathematical Society, Providence (2001)

    Google Scholar 

  55. Hernandez, R., Sfetsos, K., Zoakos, D.: Supersymmetry and Lorentzian holonomy in varies dimensions. J. High Energy Phys. 9010, 17 pp (2004)

    Google Scholar 

  56. Joyce, D.: Compact Manifolds with Special Holonomy. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  57. Kerr, R.P., Goldberg, J.N.: Some applications of the infinitesimal holonomy group to the Petrov classification of Einstein spaces. J. Math. Phys. 2, 327–332 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  58. Kerr, R.P., Goldberg, J.N.: Einstein spaces with four parameter holonomy group. J. Math. Phys. 2, 332–336 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  59. Krantz, T.: Kaluza–Klein-type metrics with special Lorentzian holonomy. J. Geom. Phys. 60, 74–80 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  60. Lärz, K.: A class of Lorentzian manifolds with indecomposable holonomy groups. arXiv:0803.4494v3 (2010)

    Google Scholar 

  61. Lärz, K.: Riemannian foliations and the topology of Lorentzian manifolds. arXiv:1010.2194v1 (2010)

    Google Scholar 

  62. Lärz, K.: Global aspects of holonomy in pseudo-Riemannian geometry. Ph.D. Thesis, Humboldt University of Berlin (2011)

    Google Scholar 

  63. Leistner, T.: Berger algebras, weak Berger algebras and Lorentzian holonomy. SFB 288-Preprint No. 567, 131–159 (2002)

    Google Scholar 

  64. Leistner, T.: Lorentzian manifolds with special holonomy and parallel spinors. Rend. Circ. Mat. Pal. II 69, 131–159 (2002)

    MathSciNet  Google Scholar 

  65. Leistner, T.: Holonomy and parallel spinors in Lorentzian geometry. Ph.D. Thesis, Humboldt University of Berlin (2003). Logos, Berlin (2004)

    Google Scholar 

  66. Leistner, T.: Conformal holonomy of C-spaces, Ricci-flat, and Lorentzian manifolds. Differ. Geom. Appl. 24(5), 458–478 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  67. Leistner, T.: Screen bundles of Lorentzian manifolds and some generalization of pp-waves. J. Geom. Phys. 56(10), 2117–2134 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  68. Leistner, T.: On the classification of Lorentzian holonomy groups. J. Differ. Geom. 76, 423–484 (2007)

    MATH  MathSciNet  Google Scholar 

  69. Matveev, V.: Gallot–Tanno theorem for pseudo-Riemannian metrics and a proof that decomposable cones over closed complete pseudo-Riemannian manifolds do not exist. arXiv:0906.2410 (2009)

    Google Scholar 

  70. Matveev, V, Mounoud, P.: Gallot–Tanno-theorem for closed incomplete pseudo-Riemannian manifolds and applications. arXiv:0909.5344 (2009)

    Google Scholar 

  71. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes. In: Alekseevsky, D., Baum, H. (eds.) Recent Developments in pseudo-Riemannian Geometry, pp. 299–358. EMS Publishing House, Switzerland (2008)

    Chapter  Google Scholar 

  72. Moroianu, A., Semmelmann, U.: Parallel spinors and holonomy groups. J. Geom. Phys. 41, 2395–2402 (2000)

    MATH  MathSciNet  Google Scholar 

  73. Neukirchner, Th.: solvable pseudo-Riemannian symmetric spaces. arXiv:math.0301326 (2003)

    Google Scholar 

  74. Pfäffle, F.: Lorentzian manifolds. In: Bär, C., Fredenhagen, K. (eds.) Quantum Field Theory on Curved Spacetimes—Concepts and Mathematical Foundations, pp. 39–58, Lecture Notes in Physics, vol. 786 (2009)

    Google Scholar 

  75. Salamon, S.: Riemannian Geometry and Holonomy Groups. Longman Scientific & Technical, Harlow, Essex, England (1989)

    MATH  Google Scholar 

  76. Schell, J.F.: Classification of 4-dimensional Riemannian spaces. J. Math. Phys. 2, 202–206 (1960)

    Article  MathSciNet  Google Scholar 

  77. Shaw, R.: The subgroup structure of the homogeneous Lorentz group. Q. J. Math. Oxford 21, 101–124 (1970)

    Article  MATH  Google Scholar 

  78. Walker, A.G.: Canonical form for a Riemannian metric with a parallel field of null planes. Q. J. Math. Oxford Ser. 1(2), 69–79 (1950)

    Article  MATH  Google Scholar 

  79. Wang, MKY.: Parallel spinors and parallel forms. Ann. Global Anal. Geom. 7, 59–68 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  80. Wolf, J.A.: Spaces of Constant Curvature. Publish or Perish, Inc., Wilmington (1984)

    Google Scholar 

  81. Wu, H.: On the de Rham decomposition theorem. Illinois J. Math. 8, 291–311 (1964)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helga Baum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baum, H. (2012). Holonomy Groups of Lorentzian Manifolds: A Status Report. In: Bär, C., Lohkamp, J., Schwarz, M. (eds) Global Differential Geometry. Springer Proceedings in Mathematics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22842-1_7

Download citation

Publish with us

Policies and ethics