Skip to main content

Kac-Moody Geometry

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 17))

Abstract

The geometry of symmetric spaces, polar actions, isoparametric submanifolds and spherical buildings is governed by spherical Weyl groups and simple Lie groups. The most natural generalization of semisimple Lie groups are affine Kac-Moody groups as they mirror their structure theory and have good explicitly known representations as groups of operators. In this article we describe the infinite dimensional differential geometry associated to affine Kac-Moody groups: Kac-Moody symmetric spaces, isoparametric submanifolds in Hilbert space, polar actions on Hilbert spaces and universal geometric twin buildings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramenko, P., Brown, K.: Buildings, vol. 248 of Graduate Texts in Mathematics. Springer, New York (2008)

    Google Scholar 

  2. Abramenko, P., Nebe, G.: Lattice chain models for affine buildings of classical type. Mathematische Annalen 322, 537–562 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Abramenko, P., Ronan, M.: A characterization of twin buildings by twin apartments. Geometriae Dedicata 73, 1–9 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berndt, J., Console, S., Olmos, C.: Submanifolds and holonomy, vol. 434 of Research Notes in Mathematics. Chapman&Hall, Boca Raton (2003)

    Google Scholar 

  5. Berger, M.: Les espaces symétriques non compacts. Ann. Sci Ecole Norm. Sup. 74, 85–177 (1957)

    MathSciNet  Google Scholar 

  6. Bourbaki, N.: Lie groups and Lie algebras, chapters 4–6. Elements of Mathematics. Springer, New York (2002)

    Book  MATH  Google Scholar 

  7. Brinkmann, H.-W.: Einstein spaces which are mapped conformally on each other. Mathematische Annalen 94 (1925)

    Google Scholar 

  8. Brcker, T., tom Dieck, T.: Representations of compact Lie groups, vol. 98 of Graduate Texts in Mathematics. Springer, New York (1998)

    Google Scholar 

  9. Bump, D.: Lie groups, vol. 225 of Graduate Texts in Mathematics. Springer, New York (2004)

    Google Scholar 

  10. Caprace, P.-E.: Abstract homomorphisms of split Kac-Moody groups. Memoir of the AMS 74 (2008)

    Google Scholar 

  11. Davis, M.W.: The Geometry and Topology of Coxeter Groups. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  12. Eberlein, P.B.: Geometry of nonpositively curved manifolds. Chicago Lectures in Mathematics, Chicago (1996)

    MATH  Google Scholar 

  13. Freyn, W.: A general theory of affine Kac-Moody symmetric spaces. Kongressberichte der Sddeutschen Geometrietagung 32, 4–18 (2007)

    Google Scholar 

  14. Freyn, W.: Kac-Moody symmetric spaces and universal twin buildings. PhD thesis, Universität Augsburg (2009)

    Google Scholar 

  15. Freyn, W.: Functional analytic methods for cities. manuscript in preparation, 2010.

    Google Scholar 

  16. Freyn, W.: Kac-Moody groups, analytic regularity conditions and cities (submitted, 2010)

    Google Scholar 

  17. Garrett, P.: Buildings and Classical Groups. Chapman Hall, London (1997)

    Book  MATH  Google Scholar 

  18. Gohberg, I., Goldberg, S., Kaashoek, M.: Basic Classes of Linear Operators. Birkhuser, Basel (2003)

    Book  MATH  Google Scholar 

  19. Gramlich, R., Mars, A.: Isomorphisms of unitary forms of Kac-Moody groups over finite fields. J. Algebra 322, 554–561 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  20. Groß, C.: s– Representations for involutions on affine Kac-Moody algebras are polar. Manuscripta Math. 103, 339–350 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hamilton, R.S.: The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.) 7(1), 65–222 (1982)

    Google Scholar 

  22. Heintze, E.: Towards symmetric spaces of affine Kac-Moody type. Int. J. Geom. Methods Mod. Phys. 3(5–6), 881–898 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Heintze, E.: Real forms and finite order automorphisms of affine Kac-Moody algebras – an outline of a new approach. Opus Bayern. http://www.opus-bayern.de/uni-augsburg/volltexte/2008/763:15 (2008)

  24. Heintze, E., Groß, C.: Involutions, finite order automorphisms and real forms of affine Kac-Moody algebras (2009)

    Google Scholar 

  25. Heintze, E., Liu, X.: Homogeneity of infinite-dimensional isoparametric submanifolds. Ann. Math. (2), 149(1), 149–181 (1999)

    Google Scholar 

  26. Heintze, E., Palais, R.S., Terng, C.-L., Thorbergsson, G.: Hyperpolar actions on symmetric spaces, pp. 214–245. Conf. Proc. Lecture Notes Geom. Topology, IV. Int. Press, Cambridge, MA (1995)

    Google Scholar 

  27. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces, vol. 34 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001) Corrected reprint of the 1978 original

    Google Scholar 

  28. Ji, L.: Buildings and their applications in geometry and topology. Asian J. Math. 10, 11–80 (2006)

    MATH  MathSciNet  Google Scholar 

  29. Kac, V.G.: Simple irreducible graded Lie algebras of finite growth (russian). Math. USSR-Izvestiya 2, 1271–1311 (1968)

    Article  MATH  Google Scholar 

  30. Kac, V.G.: Infinite-dimensional Lie algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  31. Kantor, I.L.: Graded Lie algebras (russian). Trudy Sem. Vektor. Tenzor. Anal. 15, 227–266 (1970)

    MathSciNet  Google Scholar 

  32. Kath, I., Olbrich, M.: On the structure of pseudo-Riemannian symmetric spaces. arXiv:math/ 0408249:37 (2004)

    Google Scholar 

  33. Kath, I., Olbrich, M.: The classification problem for pseudo-Riemannian symmetric spaces. arXiv:math/ 0612101v1:55 (2006)

    Google Scholar 

  34. Kobayashi, S.: Real forms of complex surfaces of constant mean curvature. (submitted, 2009)

    Google Scholar 

  35. Kramer, L.: Loop groups and twin buildings. Geometriae Dedicata 92, 145–178 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  36. Kriegl, A., Michor, P.W.: The convenient setting of global analysis, vol. 53 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1997)

    Google Scholar 

  37. Kumar, S.: Kac-Moody groups, their flag varieties and representation theory, vol. 204 of Progress in Mathematics. Birkhuser, Boston, MA (2002)

    Google Scholar 

  38. Mars, A.: Rigidity. oral communication (2010)

    Google Scholar 

  39. Mitchell, S.A.: Quillen’s theorem on buildings and the loops on a symmetric space. L’Enseignement Mathematique 34, 123–166 (1988)

    MATH  MathSciNet  Google Scholar 

  40. Moody, R.V.: Euclidean Lie algebras. Canad. J. Math. 21, 1432–1454 (1969)

    MATH  MathSciNet  Google Scholar 

  41. Moody, R.V., Pianzola, A.: Lie algebras with triangular decomposition. Wiley, New York (1995)

    Google Scholar 

  42. Neeb, K.-H.: Towards a Lie theory of locally convex groups. Jpn. J. Math. 1(2), 291–468 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. O’Neill, B.: Semi-Riemannian geometry, vol. 103 of Pure and Applied Mathematics. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1983). With applications to relativity

    Google Scholar 

  44. Palais, R., Terng, C.-L.: Critical point theory and submanifold geometry, vol. 1353 of Lecture Notes in Mathematics. Springer, Berlin (1988)

    Google Scholar 

  45. Popescu, B.: Infinite dimensional symmetric spaces. Thesis. University of Augsburg, Augsburg (2005)

    Google Scholar 

  46. Pressley, A., Segal, G.: Loop groups. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (1986)

    MATH  Google Scholar 

  47. Ray, U.: Automorphic Forms and Lie Superalgebras. Springer, New York (2006)

    MATH  Google Scholar 

  48. Rémy, B.: Groupes de Kac-Moody déployés et presque déployés. Société mathematiques de France, Paris (2002)

    MATH  Google Scholar 

  49. Sato, M., Sato, Y.: Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, vol. 81 of North-Holland Math. Stud, pp. 259–271. North-Holland, Amsterdam (1983)

    Google Scholar 

  50. Terng, C.-L.: Proper Fredholm submanifolds of Hilbert space. J. Diff. Geom. 29(1), 9–47 (1989)

    MATH  MathSciNet  Google Scholar 

  51. Thorbergsson, G.: Isoparametric foliations and their buildings. Ann. Math. 133, 429–446 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  52. Tits, J.: Groups and group functors attached to Kac-Moody data, vol. 1111 of Lecture notes in mathematics, pp. 193–233. Springer, Berlin (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter Freyn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freyn, W. (2012). Kac-Moody Geometry. In: Bär, C., Lohkamp, J., Schwarz, M. (eds) Global Differential Geometry. Springer Proceedings in Mathematics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22842-1_3

Download citation

Publish with us

Policies and ethics