Skip to main content

Entropies, Volumes, and Einstein Metrics

  • Conference paper
  • First Online:
Global Differential Geometry

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 17))

Abstract

We survey the definitions and some important properties of several asymptotic invariants of smooth manifolds, and discuss some open questions related to them. We prove that the (non-)vanishing of the minimal volume is a differentiable property, which is not invariant under homeomorphisms. We also formulate an obstruction to the existence of Einstein metrics on four-manifolds involving the volume entropy. This generalizes both the Gromov–Hitchin–Thorpe inequality proved in [Kotschick, On the Gromov–Hitchin–Thorpe inequality, C. R. Acad. Sci. Paris 326 (1998), 727–731], and Sambusetti’s obstruction [Sambusetti, An obstruction to the existence of Einstein metrics on 4-manifolds, Math. Ann. 311 (1998), 533–547].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babenko, I.K.: Asymptotic invariants of smooth manifolds. Izv. Ross. Akad. Nauk. Ser. Mat. 56, 707–751 (1992) (Russian) Engl. transl. in Russian Acad. Sci. Izv. Math. 41, 1–38 (1993)

    Google Scholar 

  2. Babenko, I.K.: Asymptotic volumes and simply connected surgeries of smooth manifolds. Izv. Ross. Akad. Nauk. Ser. Mat. 58, 218–221 (1994) (Russian); Engl. transl. in Russian Acad. Sci. Izv. Math. 44, 427–430 (1995)

    Google Scholar 

  3. Babenko, I.K.: Extremal problems of geometry, surgery on manifolds, and problems in group theory. Izv. Ross. Akad. Nauk. Ser. Mat. 59, 97–108 (1995) (Russian); Engl. translation in Izv. Math. 59, 321–332 (1995)

    Google Scholar 

  4. Bauer, S.: A stable cohomotopy refinement of Seiberg–Witten invariants: II. Invent. Math. 155, 21–40 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bauer, S., Furuta, M.: A stable cohomotopy refinement of Seiberg–Witten invariants: I. Invent. Math. 155, 1–19 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Besse, A.L.: Einstein Manifolds. Springer, Berlin (1987)

    MATH  Google Scholar 

  7. Bessières, L.: Un théorème de rigidité différentielle. Comment. Math. Helv. 73, 443–479 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Besson, G., Courtois, G., Gallot, S.: Volume et entropie minimale des espaces localement symétriques. Invent. Math. 103, 417–445 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  9. Besson, G., Courtois, G., Gallot, S.: Entropies et rigidités des espaces localement symétriques de courbure strictement négative. Geom. Func. Anal. (GAFA) 5, 731–799 (1995)

    Google Scholar 

  10. Bishop, R.L., Crittenden, R.J.: Geometry of Manifolds. Academic, New York (1964); reprinted by AMS Chelsea Publishing, Providence 2001

    Google Scholar 

  11. Brunnbauer, M.: Homological invariance for asymptotic invariants and systolic inequalities. Geom. Func. Anal. (GAFA) 18, 1087–1117 (2008)

    Google Scholar 

  12. Brunnbauer, M., Ishida, M., Suárez-Serrato, P.: An essential relation between Einstein metrics, volume entropy, and exotic smooth structures. Math. Res. Lett. 16, 503–514 (2009)

    MATH  MathSciNet  Google Scholar 

  13. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195–199. Princeton University Press, Princeton, NJ (1970)

    Google Scholar 

  14. Fintushel, R., Stern, R.J.: Rational blowdowns of smooth 4–manifolds. J. Diff. Geom. 46, 181–235 (1997)

    MATH  MathSciNet  Google Scholar 

  15. Gromov, M.: Volume and bounded cohomology. Publ. Math. I.H.E.S. 56, 5–99 (1982)

    Google Scholar 

  16. Hanke, B., Kotschick, D., Wehrheim, J.: Dissolving four-manifolds and positive scalar curvature. Math. Zeit. 245, 545–555 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hillman, J.A.: Flat 4-manifold groups. New Zealand J. Math. 24, 29–40 (1995)

    MATH  MathSciNet  Google Scholar 

  18. Hitchin, N.J.: Compact four-dimensional Einstein manifolds. J. Diff. Geom. 9, 435–441 (1974)

    MATH  MathSciNet  Google Scholar 

  19. Kedra, J., Kotschick, D., Morita, S.: Crossed flux homomorphisms and vanishing theorems for flux groups. Geom. Func. Anal. (GAFA) 16, 1246–1273 (2006)

    Google Scholar 

  20. Kotschick, D.: The Seiberg-Witten invariants of symplectic four-manifolds. Séminaire Bourbaki, 48ème année, 1995–96, no. 812. Astérisque 241, 195–220 (1997)

    Google Scholar 

  21. Kotschick, D.: Einstein metrics and smooth structures. Geom. Topology 2, 1–10 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kotschick, D.: On the Gromov–Hitchin–Thorpe inequality. C. R. Acad. Sci. Paris 326, 727–731 (1998)

    MATH  MathSciNet  Google Scholar 

  23. Kotschick, D.: Monopole classes and Einstein metrics. Intern. Math. Res. Notices 2004(12), 593–609 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kotschick, D.: Entropies, volumes, and Einstein metrics. Preprint arXiv:math/0410215 v1 [math.DG] 8 Oct 2004

    Google Scholar 

  25. Kotschick, D., Morgan, J.W., Taubes, C.H.: Four-manifolds without symplectic structures but with non-trivial Seiberg–Witten invariants. Math. Res. Lett. 2, 119–124 (1995)

    MATH  MathSciNet  Google Scholar 

  26. Ledrappier, F., Wang, X.: An integral formula for the volume entropy with applications to rigidity. J. Diff. Geom. 85, 461–477 (2010)

    MATH  MathSciNet  Google Scholar 

  27. Manning, A.: Topological entropy for geodesic flows. Ann. Math. 110, 567–573 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  28. Manning, A.: More topological entropy for geodesic flows. In: Dynamical Systems and Turbulence, Springer LNM vol. 898, pp. 234–249. Springer, Berlin (1981)

    Google Scholar 

  29. Milnor, J.: A note on curvature and the fundamental group. J. Diff. Geom. 2, 1–7 (1968)

    MATH  MathSciNet  Google Scholar 

  30. Ozsváth, P., Szabó, Z.: Higher type adjunction inequalities in Seiberg–Witten theory. J. Diff. Geom. 55, 385–440 (2000)

    MATH  Google Scholar 

  31. Paternain, G.P.: Geodesic Flows. Progress in Mathematics, vol. 180. Birkäuser, Basel (1999)

    Google Scholar 

  32. Paternain, G.P., Petean, J.: Einstein manifolds of non-negative sectional curvature and entropy. Math. Res. Lett. 7, 503–515 (2000)

    MATH  MathSciNet  Google Scholar 

  33. Paternain, G.P., Petean, J.: Minimal entropy and collapsing with curvature bounded from below. Invent. Math. 151, 415–450 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  34. Paternain, G.P., Petean, J.: Collapsing manifolds obtained by Kummer-type constructions. Trans. Am. Math. Soc. 361, 4077–4090 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sambusetti, A.: An obstruction to the existence of Einstein metrics on 4-manifolds. Math. Ann. 311, 533–547 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  36. Schmidt, R.: Spectral geometry, asymptotic invariants, and geometric group theory. Diplomarbeit München (2009)

    Google Scholar 

  37. Wagner, M.: Über die Klassifikation flacher Riemannscher Mannigfaltigkeiten. Diplomarbeit Basel (1997)

    Google Scholar 

Download references

Acknowledgements

This work is part of the project Asymptotic invariants of manifolds, supported by the Schwerpunktprogramm Globale Differentialgeometrie of the Deutsche Forschungsgemeinschaft. © D. Kotschick 2004–2010

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Kotschick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kotschick, D. (2012). Entropies, Volumes, and Einstein Metrics. In: Bär, C., Lohkamp, J., Schwarz, M. (eds) Global Differential Geometry. Springer Proceedings in Mathematics, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22842-1_2

Download citation

Publish with us

Policies and ethics