Unsupervised Video Surveillance

  • Nicoletta Noceti
  • Francesca Odone
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6468)


This paper addresses the problem of automatically learning common behaviors from long time observations of a scene of interest, with the purpose of classifying actions and, possibly, detecting anomalies. Unsupervised learning is used as an effective way to extract information from the scene with a very limited intervention of the user. The method we propose is rather general, but fits very naturally to a video-surveillance scenario, where the same environment is observed for a long time, usually from a distance. The experimental analysis is based on thousands of dynamic events acquired by three-weeks observations of a single-camera video-surveillance system installed in our department.


Spectral Cluster Equal Error Rate Common Behavior Unsupervised Setting Training Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Special issue on event analysis in videos. IEEE Trans on Circuits and Systems for Video Technology 18 (2008)Google Scholar
  2. 2.
    Pittore, M., Campani, M., Verri, A.: Learning to recognize visual dynamic events from examples. IJCV (2000)Google Scholar
  3. 3.
    Bashir, F., Khokhar, A., Schonfeld, D.: Object trajectory-based activity classification and recognition using hidden markov model. IEEE Trans. on IP 16 (2007)Google Scholar
  4. 4.
    Stauffer, C., Grimson, E.: Learning patterns of activity using real-time tracking. IEEE Transactions on PAMI 22 (2000)Google Scholar
  5. 5.
    Hu, W., Xiao, X., Fu, Z., Xie, D., Tan, T., Maybank, S.: A system for learning statistical motion patterns. IEEE Trans on PAMI 28 (2006)Google Scholar
  6. 6.
    Piciarelli, C., Micheloni, C., Foresti, G.L.: Trajectory-based anomalous event detection. IEEE Trans on Circuits and Systems for Video Technology 18 (2008)Google Scholar
  7. 7.
    Anjum, N., Cavallaro, A.: Multifeature object trajectory clustering for video analysis. IEEE Trans. on Circuits and Systems for Video Technology 18 (2008)Google Scholar
  8. 8.
    Hamid, R., Johnson, A., Batta, S., Bobick, A., Isbell, C., Colenam, G.: Detection and explanation of anomalous activities: representing activities as bags of event n-grams. In: Proc. CVPR (2005)Google Scholar
  9. 9.
    Jebara, T., Song, Y., Thadani, K.: Spectral clustering and embedding with hidden markov models. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 164–175. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Liao, T.W.: Clustering of time series data: A survey. Patt. Recogn. 38 (2005)Google Scholar
  11. 11.
    Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. In: Proc. of BMVC (2006)Google Scholar
  12. 12.
    Rieck, K., Laskov, P.: Linear-time computation of similarity measures for sequential data. JMLR 9, 23–48 (2008)zbMATHGoogle Scholar
  13. 13.
    Morris, B., Trivedi, M.M.: Learning trajectory patterns by clustering: Experimental studies and comparative evaluation. In: Proc. CVPR (2009)Google Scholar
  14. 14.
    Ning, H., Xu, W., Chi, Y., Gong, Y., Huang, T.S.: Incremental spectral clustering by efficiently updating the eigen-system. Pattern Recogn. 43, 113–127 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Chi, Y., Song, X., Zhou, D., Hino, K., Tseng, B.L.: On evolutionary spectral clustering. ACM Trans. Knowl. Discov. Data 3, 1–30 (2009)CrossRefGoogle Scholar
  16. 16.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. Journal of Intelligent Information Systems 17, 107–145 (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Günter, S., Bunke, H.: Validation indices for graph clustering. Pattern Recogn. Lett. 24, 1107–1113 (2003)CrossRefzbMATHGoogle Scholar
  18. 18.
    Noceti, N., Santoro, M., Odone, F.: String-based spectral clustering for understanding human behaviours. In: THEMIS-BMVC (2008)Google Scholar
  19. 19.
    Noceti, N., Odone, F.: Towards and unsupervised framework for behavior analysis. In: Proc. of AI*IA (PRAI*HBA) (2010)Google Scholar
  20. 20.
    Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. on PAMI 22, 888–905 (2000)CrossRefGoogle Scholar
  21. 21.
    Taylor, J.S., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  22. 22.
    Angelova, A., Abu-Mostafa, Y., Perona, P.: Pruning training sets for learning of object categories. In: Proc CVPR (2005)Google Scholar
  23. 23.
    Grira, N., Crucianu, M., Boujemaa, N.: Unsupervised and semi-supervised clustering: a brief survey. In Muscle VIFP EU NoE (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Nicoletta Noceti
    • 1
  • Francesca Odone
    • 1
  1. 1.DISI - Università degli Studi di GenovaItaly

Personalised recommendations