Advertisement

Estimating Human Body and Head Orientation Change to Detect Visual Attention Direction

  • Ovgu Ozturk
  • Toshihiko Yamasaki
  • Kiyoharu Aizawa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6468)

Abstract

This paper presents a method to estimate human body and head orientation change around yaw axis from low-resolution data. Body orientation is calculated by using Shape Context algorithm to match the outline of upper body with predefined shape templates within the ranges of 22.5 degrees. Then, motion flow vectors of SIFT features around head region are utilized to estimate the change in head orientation. Body orientation change and head orientation change can be added to the initial orientation to compute the new visual focus of attention of the person. Experimental results are presented to prove the effectiveness of the proposed method. Successful estimations, which are supported by a user study, were obtained from low-resolution data under various head pose articulations.

Keywords

Interval Length Head Region Orientation Change Body Orientation Head Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stiefelhagen, R., Finke, M., Yang, J., Waibel, A.: From gaze to focus of attention. In: Huijsmans, D.P., Smeulders, A.W.M. (eds.) VISUAL 1999. LNCS, vol. 1614, pp. 761–768. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Ozturk, O., Yamasaki, T., Aizawa, K.: Tracking of humans and estimation of body/head orientation from top-view single camera for visual focus of attention analysis. In: THEMIS 2009 Workshop held within ICCV (2009)Google Scholar
  3. 3.
    Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 509–522 (2002)CrossRefGoogle Scholar
  4. 4.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Intl. Journal of Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  5. 5.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. IJCAI (1981)Google Scholar
  6. 6.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: Speeded-up robust features. Computer Vision and Image Understanding 110, 346–359 (2008)CrossRefGoogle Scholar
  7. 7.
    Voit, M., Nickel, K., Stiefelhagen, R.: Multi-view head pose estimation using neural networks. In: Canadian Conf. on Computer and Robot Vision, pp. 347–352 (2005)Google Scholar
  8. 8.
    Voit, M., Steifelhagen, R.: A system for probabilistic joint 3d head tracking and pose estimation in low-resolution, multi-view environments. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 415–424. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Voit, M., Steifelhagen, R.: Visual focus of attention in dynamic meeting scenarios. In: Popescu-Belis, A., Stiefelhagen, R. (eds.) MLMI 2008. LNCS, vol. 5237, pp. 1–13. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Ba, S., Odobez, J.: Multi-person visual focus of attention from head pose and meeting contextual cues. IEEE Transactions on Pattern Analysis and Machine Intelligence 99 (2010)Google Scholar
  11. 11.
    Murphy-Chutorian, E., Trivedi, M.: Hybrid head orientation and position estimation (hyhope): a system and evaluation for driver support. In: Proc. IEEE Intelligent Vehicles Symp. (2008)Google Scholar
  12. 12.
    Glas, D., Miyashita, T., Ishiguro, H., Hagita, N.: Laser tracking of human body motion using adaptive shape modeling. In: Proc.IEEE/RSJ Conf. on Intelligent Robots and Systems, pp. 602–608 (2007)Google Scholar
  13. 13.
    Brown, L., Tian, Y.: Comparative study of coarse head pose estimation. MOTION (2002)Google Scholar
  14. 14.
    Matsumoto, Y., Ogasawara, T., Zelinsky, A.: Behavior recognition based on head pose and gaze direction measurement. In: Proc. IEEE/RSJ Conf. on Intelligent Robots and Systems, pp. 2127–2132 (2000)Google Scholar
  15. 15.
    Wu, Y., Toyama, K.: Wide-range person and illumination-insensitive head orientation estimation. In: Proc. of the Fourth Int’l Conf. on Automatic Face and Gesture Recognition, pp. 183–188 (2000)Google Scholar
  16. 16.
    Sherrah, J., Gong, S., Ong, E.: Face distributions in similarity space under varying head pose. IVC 19, 807–819 (2001)CrossRefGoogle Scholar
  17. 17.
    Otsuka, K., Takemae, Y., Yamato, J., Murase, H.: Probabilistic inference of gaze patterns and structure of multiparty conversations from head directions and utterances. In: Washio, T., Sakurai, A., Nakajima, K., Takeda, H., Tojo, S., Yokoo, M. (eds.) JSAI Workshop 2006. LNCS (LNAI), vol. 4012, pp. 353–364. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Ma, Y., Konishi, Y., Kinoshita, K., Lao, S., Kawade, M.: Sparse bayesian regression for head pose estimation. In: Proc. 18th Intfl Conf. Pattern Recognition, pp. 507–510 (2006)Google Scholar
  19. 19.
    Chutorian, E.M., Trivedi, M.: Head pose estimation in computer vision: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 31 (2009)Google Scholar
  20. 20.
    Shimizu, H., Poggio, T.: Direction estimation of pedestrians from multiple still images. In: IEEE Intelligent Vehicle Symposium (2004)Google Scholar
  21. 21.
    Gandhi, T., Trivedi, M.: Image based estimation of pedestrian orientation for improving path prediction. In: IEEE Intelligent Vehicles Symposium, pp. 506–511 (2008)Google Scholar
  22. 22.
    Benfold, B., Reid, I.: Colour invariant head pose classification in low resolution video. In: BMVC (2008)Google Scholar
  23. 23.
    Zhao, G., Chen, L., Song, J., Chen, G.: Large head movement tracking using sift-based registration. In: Proc. ACM Intfl Conf. Multimedia, pp. 807–810 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ovgu Ozturk
    • 1
  • Toshihiko Yamasaki
    • 1
  • Kiyoharu Aizawa
    • 1
  1. 1.Fac. of Eng.TokyoJapan

Personalised recommendations