Advertisement

Background Subtraction for PTZ Cameras Performing a Guard Tour and Application to Cameras with Very Low Frame Rate

  • C. Guillot
  • M. Taron
  • Patrick Sayd
  • Q. C. Pham
  • C. Tilmant
  • J. M. Lavest
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6468)

Abstract

Pan Tilt Zoom cameras have the ability to cover wide areas with an adapted resolution. Since the logical downside of high resolution is a limited field of view, a guard tour can be used to monitor a large scene of interest. However, this greatly increases the duration between frames associated to a specific location. This constraint makes most background algorithms ineffective. In this article we propose a background subtraction algorithm suitable to cameras with very low frame rate. Its main interest consists in the resulting robustness to sudden illumination changes. The background model which describes a wide scene of interest consisting of a collection of images can thus be successfully maintained. This algorithm is compared with the state of the art and a discussion regarding its properties follows.

Keywords

Background Subtraction Recall Curve Wide Angle Camera Background Subtraction Method Texture Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, R., Nagel, H.: On the analysis of accumulative difference pictures from image sequences of real world scenes, vol. 1, pp. 206–213 (1979)Google Scholar
  2. 2.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: CVPR (1999)Google Scholar
  3. 3.
    Bouwmans, T., El Baf, F., Vachon, B.: Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey. Recent Patents on Computer Science (2008)Google Scholar
  4. 4.
    Elgammal, A.M., Harwood, D., Davis, L.S.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: CVPR, vol. 2, pp. 302–309 (2004)Google Scholar
  6. 6.
    Chen, Y.T., Chen, C.S., Huang, C.R., Hung, Y.P.: Efficient hierarchical method for background subtraction. Pattern Recognition (2007)Google Scholar
  7. 7.
    Dhome, Y., Tronson, N., Vacavant, A., Chateau, T., Gabard, C., Goyat, Y., Gruyer, D.: A benchmark for background subtraction algorithms in monocular vision: a comparative study. In: IPTA (2010)Google Scholar
  8. 8.
    Zhu, Q., Avidan, S., Cheng, K.T.: Learning a sparse, corner-based representation for time-varying background modelling. In: ICCV, vol. 1, pp. 678–685 (2005)Google Scholar
  9. 9.
    Bhat, K., Saptharishi, M., Khosla, P.K.: Motion detection and segmentation using image mosaics. In: ICME (2000)Google Scholar
  10. 10.
    Cucchiara, R., Prati, A., Vezzani, R.: Advanced video surveillance with pan tilt zoom cameras. In: Proc. of Workshop on Visual Surveillance (VS) at ECCV (2006)Google Scholar
  11. 11.
    Azzari, P., Di Stefano, L., Bevilacqua, A.: An effective real-time mosaicing algorithm apt to detect motion through background subtraction using a ptz camera. In: AVSS (2005)Google Scholar
  12. 12.
    Robinault, L., Bres, S., Miguet, S.: Real time foreground object detection using ptz camera. In: VISAPP (2009)Google Scholar
  13. 13.
    Guillot, C., Taron, M., Sayd, P., Pham, Q.C., Tilmant, C., Lavest, J.M.: Background subtraction adapted to ptz cameras by keypoint density estimation. In: BMVC (2010) (to appear in bmvc 2010: supplied as supplementary material)Google Scholar
  14. 14.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: CVIU (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • C. Guillot
    • 1
  • M. Taron
    • 1
  • Patrick Sayd
    • 1
  • Q. C. Pham
    • 1
  • C. Tilmant
    • 2
  • J. M. Lavest
    • 2
  1. 1.CEA, LIST, Vision and Content Engineering LaboratoryGif-sur-YvetteFrance
  2. 2.LASMEA UMR 6602, PRES Clermont Université/CNRSAubière cedexFrance

Personalised recommendations