An Appearance-Based Approach to Assistive Identity Inference Using LBP and Colour Histograms

  • Sareh Abolahrari Shirazi
  • Farhad Dadgostar
  • Brian C. Lovell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6468)


Robust identity inference is one of the biggest challenges in current visual surveillance systems. Although, face is an important biometric for generic identity inference, it is not always accessible in video-based surveillance systems due to the poor quality of the video or ineffective viewpoints where the captured face is not clearly visible. Hence, taking advantage of additional features to increase the accuracy and reliability of these systems is an increasing need. Appearance and clothing are potentially suitable for visual identification and tracking suspects. In this research we present a novel approach for recognition of upper body clothing, using local binary patterns (LBP) and colour information, as an assistive tool for identity inference.


Local Binary Patterns Colour Histogram Object Recognition Ensemble-Learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Takala, V., Pietikainen, M.: Multi-Object Tracking Using Color, Texture and Motion. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007 (2007)Google Scholar
  2. 2.
    Ning, J.: Robust Object Tracking using Joint Color-Texture Histogram. International Journal of Pattern Recognition 23(7), 1245–1263 (2009)CrossRefGoogle Scholar
  3. 3.
    Iqbal, Q., Aggarwal, J.: CIRES: A system for content-based retrieval in digital image libraries. In: International Conference on Control, Automation, Robotics and Vision, pp. 205–210 (2002)Google Scholar
  4. 4.
    Mäenpää, T., Pietikäinen, M.: Texture analysis with local binary patterns. In: Handbook of Pattern Recognition and Computer Vision, vol. 3, pp. 197–216.Google Scholar
  5. 5.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recognition 29(1), 51–59 (1996)CrossRefGoogle Scholar
  6. 6.
    Marcel, S., Rodriguez, Y., Heusch, G.: On the recent use of local binary patterns for face authentication. International Journal on Image and Video Processing Special Issue on Facial Image Processing, 06–34 (2007)Google Scholar
  7. 7.
    Pietikäinen, M.: Image analysis with local binary patterns. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 115–118. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Ojala, T., Pietikäinen, M., Mäenpää, T., Viertola, J.: Multiresolution gray-scale and rotation invariant texture classification with loval binary patterns. Pattern Analysis and Machine Intelligence 24, 971–987 (2002)CrossRefGoogle Scholar
  9. 9.
    Jin, H.: Face detection using improved LBP under bayesian framework. In: International Conference on Image and Graphics, pp. 306–309 (2004)Google Scholar
  10. 10.
    Huang, X., Li, S., Wang, Y.: Shape localization based on statistical method using extended local binary pattern. In: International Conference on Image and Graphics (2004)Google Scholar
  11. 11.
    Feng, X., Pietikainen, M., Hadid, A.: Facial expression recognition with local binary patterns and linear programming. Pattern Recognition And Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii 15(2), 546 (2005)Google Scholar
  12. 12.
    Sun, Z., Tan, T., Qiu, X.: Graph matching iris image blocks with local binary pattern. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 366–372. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Nanni, L., Lumini, A.: Local binary patterns for a hybrid fingerprint matcher. Pattern Recognition 41(11), 3461–3466 (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(12), 2037–2041 (2006)CrossRefzbMATHGoogle Scholar
  15. 15.
    Bradski, G.: Computer vision face tracking for use in a perceptual user interface. Intel Technology Journal 2(2), 12–21 (1998)Google Scholar
  16. 16.
    Collins, R., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1631–1643 (2005)CrossRefGoogle Scholar
  17. 17.
    Yang, T., et al.: Real-time multiple objects tracking with occlusion handling in dynamic scenes, vol. 1: pp. 970–975 (2005)Google Scholar
  18. 18.
    Swain, M., Ballard, D.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)CrossRefGoogle Scholar
  19. 19.
    Hongli, X., De, X., Yong, G.: Region-based image retrieval using color coherence region vectors. In: International Conference on Signal Processing, vol. 1, pp. 761–764 (2004)Google Scholar
  20. 20.
    Mäenpää, T., Pietikäinen, M.: Classification with color and texture: jointly or separately? Pattern Recognition 37(8), 1629–1640 (2004)CrossRefGoogle Scholar
  21. 21.
    Thai, B., Healey, G.: Modeling and classifying symmetries using a multiscale opponent color representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 12 (1998)CrossRefGoogle Scholar
  22. 22.
    Paschos, G., Valavanis, K.P.: A color texture based visual monitoring system for automated surveillance. IEEE Transactions on Systems 29(2), 10 (1999)Google Scholar
  23. 23.
    Akhloufi, M.A.: A new color-texture approach for industrial products inspection. Multimedia 3, 8 (2008)Google Scholar
  24. 24.
    Choi, Y., et al.: Retrieval of Identical Clothing Images Based on Local Color Histograms. In: International Conference on Convergence and Hybrid Information Technology, pp. 818–823 (2008)Google Scholar
  25. 25.
    van de Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Transactions On Pattern Analysis And Machine Intelligence 23(9), 1582–1596 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sareh Abolahrari Shirazi
    • 1
    • 2
  • Farhad Dadgostar
    • 1
    • 2
  • Brian C. Lovell
    • 1
    • 2
  1. 1.NICTASt LuciaAustralia
  2. 2.School of ITEEThe University of QueenslandAustralia

Personalised recommendations