Visual Object Tracking via One-Class SVM

  • Li Li
  • Zhenjun Han
  • Qixiang Ye
  • Jianbin Jiao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6468)


In this paper, we propose a new visual object tracking approach via one-class SVM (OC-SVM), inspired by the fact that OC-SVM’s support vectors can form a hyper-sphere, whose center can be regarded as a robust object estimation from samples. In the tracking approach, a set of tracking samples are constructed in a predefined searching window of a video frame. And then a threshold strategy is proposed to select examples from the tracking sample set. Selected examples are used to train an OC-SVM model which estimates a hyper-sphere encircling most of the examples. Finally, we locate the center of the hyper sphere as the tracked object in the current frame. Extensive experiments demonstrate the effectiveness and robustness of the proposed approach in complex background.


Object tracking One-class SVM Tracking sample set 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Avidan, S.: Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(8), 1064–1072 (2004)CrossRefGoogle Scholar
  3. 3.
    Betke, M., Gips, J., Fleming, P.: The camera mouse: Visual tracking of body features to provide computer access for people with severe disabilities. IEEE Transactions on Neural Systems and Rehabilitation Engineering 10(1), 1–10 (2002)CrossRefGoogle Scholar
  4. 4.
    Collins, R., Zhou, X., Teh, S.K.: An open source tracking testbed and evaluation web site. In: IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (2005)Google Scholar
  5. 5.
    Collins, R.T., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1631–1643 (2005)Google Scholar
  6. 6.
    Cucchiara, R., Grana, C., Prati, A., Vezzani, R.: Computer vision system for in-house video surveillance, vol. 152, pp. 242–249 (2005)Google Scholar
  7. 7.
    Dai, H., Chen, M., Zhou, S.: Support vector machine based adaptive kalman filtering for target tracking. In: General System and Control System, pp. 114–118 (2007)Google Scholar
  8. 8.
    Fisher, R., Santos-Victor, J., Crowley, J.: Caviar test case scenarios,
  9. 9.
    Han, Z., Ye, Q., Jiao, J.: Online feature evaluation for object tracking using kalman filter. In: IEEE International Conference on Pattern Recognition, pp. 3105–3108 (2008)Google Scholar
  10. 10.
    Kabaoglu, N.: Target tracking using particle filters with support vector regression. IEEE Transactions on Vehicular Technology 58(5), 2569–2573 (2009)CrossRefGoogle Scholar
  11. 11.
    Kailath, T.: The divergence and bhattacharyya distance measures in signal selection(divergence and bhattacharyya distance measures in signal selection). IEEE Transactions on Communication Technology 15, 52–60 (1967)CrossRefGoogle Scholar
  12. 12.
    Li, Y., Yang, J., Wu, R., Gong, F.: Efficient object tracking based on local invariant features. In: International Symposium on Communications and Information Technologies, pp. 697–700 (2006)Google Scholar
  13. 13.
    Liang, D., Huang, Q., Jiang, S., Yao, H., Gao, W.: Mean-shift blob tracking with adaptive feature selection and scale adaptation. In: IEEE International Conference on Image Processing, vol. 3, pp. 1497–1500 (2007)Google Scholar
  14. 14.
    McCall, J.C., Trivedi, M.M.: Video-based lane estimation and tracking for driver assistance: survey, system, and evaluation. IEEE Transactions on Intelligent Transportation Systems 7(1), 20–37 (2006)CrossRefGoogle Scholar
  15. 15.
    Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural computation 13(7), 1443–1471 (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    Schulz, D., Burgard, W., Fox, D., Cremers, A.B.: People tracking with mobile robots using sample-based joint probabilistic data association filters. International Journal of Robotics Research 22(2), 99–116 (2003)CrossRefGoogle Scholar
  17. 17.
    Tang, F., Brennan, S., Zhao, Q., Tao, H.: Co-tracking using semi-supervised support vector machines. In: IEEE International Conference on Computer Vision, pp. 992–999 (2007)Google Scholar
  18. 18.
    Zhang, J., Chen, D., Tang, M.: Combining discriminative and descriptive models for tracking. In: Computer Vision CACCV 2009, pp. 113–122 (2010)Google Scholar
  19. 19.
    Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artificial intelligence 137(1-2), 239–263 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zhu, G., Liang, D., Liu, Y., Huang, Q., Gao, W.: Improving particle filter with support vector regression for efficient visual tracking. In: IEEE International Conference on Image Processing, pp. 1501–1504 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Li Li
    • 1
  • Zhenjun Han
    • 1
  • Qixiang Ye
    • 1
  • Jianbin Jiao
    • 1
  1. 1.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations