Advertisement

Frontal Face Generation from Multiple Low-Resolution Non-frontal Faces for Face Recognition

  • Yuki Kono
  • Tomokazu Takahashi
  • Daisuke Deguchi
  • Ichiro Ide
  • Hiroshi Murase
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6468)

Abstract

We propose a method of frontal face generation from multiple low-resolution non-frontal faces for face recognition. The proposed method achieves an image-based face pose transformation by using the information obtained from multiple input face images without considering three-dimensional face structure. To achieve this, we employ a patch-wise image transformation strategy that calculates small image patches in the output frontal face from patches in the multiple input non-frontal faces by using a face image dataset. The dataset contains faces of a large number of individuals other than the input one. Using frontal face images actually transformed from low-resolution non-frontal face images, two kinds of experiments were conducted. The experimental results demonstrates that increasing the number of input images improves the RMSEs and the recognition rates for low-resolution face images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, S., Kanade, T.: Hallucinating faces. In: Proc. International Conference on Automatic Face and Gesture Recognition, pp. 83–88 (2000)Google Scholar
  2. 2.
    Jia, K., Gong, S.: Hallucinating multiple occluded face images of different resolutions. Pattern Recognition Letters 27, 1768–1775 (2006)CrossRefGoogle Scholar
  3. 3.
    Dedeoǧlu, G., Baker, S., Kanade, T.: Resolution-aware fitting of active appearance models to low resolution images. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 83–97. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Lan, C., Hu, R., Lu, T., Luo, D., Han, Z.: Global face super resolution and contour region constraints. In: Zhang, L., Lu, B.-L., Kwok, J. (eds.) ISNN 2010. LNCS, vol. 6064, pp. 120–127. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Huang, H., He, H., Fan, X., Zhang, J.: Super-resolution of human face image using canonical correlation analysis. IEEE Trans. Pattern Recognition 43, 2532–2543 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Beymer, D., Poggio, T.: Face recognition from one example view. In: Proc. 5th International Conference on Computer Vision, pp. 500–507 (1995)Google Scholar
  7. 7.
    Blanz, V.G., Phillips, P.J., Vetter, T.: Face recognition based on frontal views generated from non-frontal images. In: Proc. International Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 454–461 (2005)Google Scholar
  8. 8.
    Utsumi, A., Tetsutani, N.: Adaptation of appearance model for human tracking using geometrical pixel value distribution. In: Proc. 6th Asian Conference on Computer Vision, vol. 2, pp. 794–799 (2004)Google Scholar
  9. 9.
    Chai, X., Shan, S., Chen, X., Gao, W.: Locally linear regression for pose-invariant face recognition. IEEE Trans. Image Processing 16, 1716–1725 (2007)MathSciNetCrossRefGoogle Scholar
  10. 10.
    SOFTPIA JAPAN.: HOIP-F (Face Image Dataset), http://www.softopia.or.jp/rd/facedb.html
  11. 11.
    Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proc. International Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 586–591 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yuki Kono
    • 1
  • Tomokazu Takahashi
    • 1
    • 2
  • Daisuke Deguchi
    • 1
  • Ichiro Ide
    • 1
  • Hiroshi Murase
    • 1
  1. 1.Graduate School of Information ScienceNagoya UnivesityNagoyaJapan
  2. 2.Faculty of Economics and InformationGifu Shotoku Gakuen UniversityJapan

Personalised recommendations