Object Flow: Learning Object Displacement

  • Constantinos Lalos
  • Helmut Grabner
  • Luc Van Gool
  • Theodora Varvarigou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6468)


Modelling the dynamic behaviour of moving objects is one of the basic tasks in computer vision. In this paper, we introduce the Object Flow, for estimating both the displacement and the direction of an object-of-interest. Compared to the detection and tracking techniques, our approach obtains the object displacement directly similar to optical flow, while ignoring other irrelevant movements in the scene. Hence, Object Flow has the ability to continuously focus on a specific object and calculate its motion field. The resulting motion representation is useful for a variety of visual applications (e.g., scene description, object tracking, action recognition) and it cannot be directly obtained using the existing methods.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  2. 2.
    Kanade, T., Lucas, B.: An iterative image registration technique with an application to stereo vision. In: Proc. Int. Joint Conf. on Artificial Intelligence, pp. 674–679 (1981)Google Scholar
  3. 3.
    Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.: SIFT flow: Dense correspondence across different scenes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 28–42. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Seitz, S., Baker, S.: Filter flow. In: Proc. ICCV (2009)Google Scholar
  5. 5.
    Werlberger, M., Trobin, W., Pock, T., Wedel, A., Cremers, D., Bischof, H.: Anisotropic Huber-L1 optical flow. In: BMVC, London, UK (2009)Google Scholar
  6. 6.
    Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. In: Proc. CVPR (2009)Google Scholar
  7. 7.
    Sun, D., Roth, S., Lewis, J., Black, M.: Learning optical flow. In: Proc. ECCV (2008)Google Scholar
  8. 8.
    Wu, Y., Fan, J.: Contextual flow. In: Proc. CVPR (2009)Google Scholar
  9. 9.
    Shi, J., Malik, J.: Motion segmentation and tracking using normalized cuts. In: Proc. ICCV (1998)Google Scholar
  10. 10.
    Odobez, J.-M., Daniel Gatica-Perez, S.B.: Embedding motion in model-based stochastic tracking. IEEE Transactions on Image Processing 15, 3515–3531 (2006)CrossRefGoogle Scholar
  11. 11.
    Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: Proc. CVPR (2007)Google Scholar
  12. 12.
    Santner, J., Werlberger, M., Mauthner, T., Paier, W., Bischof, H.: FlowGames. In: 1st Int. Workshop on CVCG in conjunction with CVPR (2010)Google Scholar
  13. 13.
    Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proc. CVPR, vol. II, pp. 246–252 (1999)Google Scholar
  14. 14.
    Leibe, B., Schindler, K., Gool, L.V.: Coupled detection and trajectory estimation for multi-object tracking. In: Proc. ICCV (2007)Google Scholar
  15. 15.
    Breitenstein, M.D., Reichlin, F., Leibe, B., Koller-Meier, E., Gool, L.V.: Robust tracking-by-detection using a detector confidence particle filter. In: Proc. ICCV (2009)Google Scholar
  16. 16.
    Grabner, H., Bischof, H.: On-line boosting and vision. In: Proc. CVPR, vol. 1, pp. 260–267 (2006)Google Scholar
  17. 17.
    Stalder, S., Grabner, H., Gool, L.V.: Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition. In: Proc. IEEE WS on On-line Learning for Computer Vision (2009)Google Scholar
  18. 18.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. CVPR, vol. 1, pp. 886–893 (2005)Google Scholar
  19. 19.
    Yu, J., Amores, J., Sebe, N., Radeva, P., Tian, Q.: Distance learning for similarity estimation. IEEE Trans. on PAMI (2008)Google Scholar
  20. 20.
    Hertz, T., Bar-Hillel, A., Weinshall, D.: Learning distance functions for image retrieval. In: Proc. CVPR, vol. 2, pp. 570–577 (2004)Google Scholar
  21. 21.
    Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. CVPR, vol. I, pp. 511–518 (2001)Google Scholar
  22. 22.
    Prisacariu, V., Reid, I.: fasthog - a real-time gpu implementation of hog. Technical Report 2310/09 (Department of Engineering Science, Oxford University)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Constantinos Lalos
    • 1
  • Helmut Grabner
    • 2
  • Luc Van Gool
    • 2
    • 3
  • Theodora Varvarigou
    • 1
  1. 1.School of Electrical & Computer EngineeringNTUAGreece
  2. 2.Computer Vision LaboratoryETH ZurichSwitzerland
  3. 3.ESAT-PSI/IBBTK.U. LeuvenBelgium

Personalised recommendations