Shortest Path Based Planar Graph Cuts for Bi-layer Segmentation of Binocular Stereo Video

  • Xiangsheng Huang
  • Lujin Gong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6469)


Separating a foreground layer from stereo video in real-time is used in many applications such as live background substitution. Conventional separating models using stereo, contrast or color alone are usually not accurate enough to be satisfactory. Furthermore, the powerful tool of graph cut which is well suited for segmentation is known to be not efficient enough especially for high resolution images. In this paper, we conquer these difficulties by fusing stereo with color and contrast to model the segmentation problem as an minimum cut problem of a planar graph and solving it by a specialized algorithm, parametric shortest paths [8] with a dynamic tree structure, in O(nlogn) time. Experimental results demonstrate the high accuracy and efficiency of the algorithm.


Short Path Planar Graph High Resolution Image Dual Graph Segmentation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acar, U.A., Blelloch, G.E., Harper, R., Vittes, J.L., Woo, S.L.M.: Dynamizing static algorithms, with applications to dynamic trees and history independence. In: Proc. 15th Ann. ACM-SIAM Symp. Discrete Algorithms, pp. 531–540 (2004)Google Scholar
  2. 2.
    Alstrup, S., Holm, J., De Lichtenberg, K., Thorup, M.: Maintaining information in fully dynamic trees with top trees. ACM Trans. Algorithms 1(2), 243–264 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baker, S., Szeliski, R., Anandan, P.: A layered approach to stereo reconstruction. In: Proc. CVPR, Santa Barbara, pp. 434–441 (1998)Google Scholar
  4. 4.
    Boykov, Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: Proc. Int. Conf. on Computer Vision (2001)Google Scholar
  5. 5.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE PAMI 26(9), 1124–1137 (2004)CrossRefzbMATHGoogle Scholar
  6. 6.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. on PAMI 23(11) (2001)Google Scholar
  7. 7.
    Criminisi, A., Shotton, J., Blake, A., Torr, P.H.S.: Gaze manipulation for one to one teleconferencing. In: Proc. ICCV (2003)Google Scholar
  8. 8.
    Erickson, J.: Maximum flows and parametric shortest paths in planar graphs. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (2010)Google Scholar
  9. 9.
    Geiger, D., Ladendorf, B., Yuille, A.: Occlusions and binocular stereo. Int. J. Computer Vision 14, 211–226 (1995)CrossRefGoogle Scholar
  10. 10.
    Jojic, N., Frey, B.: Learning flexible sprites in video layers. In: Proc. CVPR, Hawaii (2001)Google Scholar
  11. 11.
    Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Probabilistic fusion of stereo with color and contrast for bilayer segmentation. PAMI 28(8) (2006)Google Scholar
  12. 12.
    Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Proc. ECCV, Copenhagen, Denmark (2002)Google Scholar
  13. 13.
    Mortensen, E.N., Barrett, W.A.: Intelligent Scissors for Image Composition. In: Computer Graphics (SIGGRAPH 1995), Los Angeles, California, pp. 191–198 (1995)Google Scholar
  14. 14.
    Rother, C., Kolmogorov, V., Blake, A.: GrabCut–Interactive foreground extraction using iterated graph cuts. In: Proc. ACM Siggraph (2004)Google Scholar
  15. 15.
    Rowe, S.M., Blake, A.: Statistical mosaics for tracking. J. Image and Vision Computing 14, 549–564 (1996)CrossRefGoogle Scholar
  16. 16.
    Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. In: JCSS, pp. 362–391 (1981)Google Scholar
  17. 17.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proc. CVPR, pp. 246–252 (1999)Google Scholar
  18. 18.
    Tarjan, R.E., Werneck, R.F.: Self-adjusting top trees. In: Proc. 16th Ann. ACM-SIAM Symp. Discrete Algorithms, pp. 813–822 (2005)Google Scholar
  19. 19.
    Torr, P.H.S., Szeliski, R., Anandan, P.: An integrated Baysesian approach to layer extraction from image sequences. PAMI (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Xiangsheng Huang
    • 1
  • Lujin Gong
    • 2
  1. 1.Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Scientific and Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering ComputingAMSS, CASBeijingChina

Personalised recommendations