Augmented Reality System for Visualizing 3-D Region of Interest in Unknown Environment

  • Sei Ikeda
  • Yoshitsugu Manabe
  • Kunihiro Chihara
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6469)


This paper presents a novel augmented reality system which allows a user to visualize 3-D region of interest to share with other users in a real environment. To allocate the region, user specifies a point on the target object through a mobile display. The most remarkable difference from the existing works is that semantic information of the environment is not given. This kind of augmented reality application is still few though vision tracking techniques without prior knowledge about environment are coming into practical use. By realizing minimum set of our concept, we could found several concrete future works, most of which are computer vision problems.


Augmented Reality Surface Point Unknown Environment Augmented Reality System Augmented Reality Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kurata, T., Sakata, N., Kourogi, M., Kuzuoka, H., Billinghurst, M.: Remote collaboration using a shoulder-worn active camera/laser. In: Proc. ISWC 2004, pp. 62–69. IEEE Computer Society, Washington, DC (2004)Google Scholar
  2. 2.
    Yu, Y., Ferencz, A., Malik, J.: Extracting objects from range and radiance images. IEEE Transactions on Visualization and Computer Graphics 7, 351–364 (2001)CrossRefGoogle Scholar
  3. 3.
    Azuma, R.T.: A survey of augmented reality. Presence: Teleoperators and Virtual Environments 6, 355–385 (1997)CrossRefGoogle Scholar
  4. 4.
    Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Proc. 6th IEEE and ACM Int. Symp. on Mixed and Augmented Reality (ISMAR 2007), pp. 1–10 (2007)Google Scholar
  5. 5.
    Sim, R., Dudek, G.: Learning and evaluating visual feautres for pose estimation. In: Proc. 1999 IEEE Int. Conf. on Computer Vision, vol. 2, pp. 1217–1222 (1999)Google Scholar
  6. 6.
    Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: Proc. 9th IEEE Int. Conf. on Computer Vision, vol. 2, pp. 1403–1410 (2003)Google Scholar
  7. 7.
    Burschka, D., Hager, G.D.: V-GPS (SLAM): Vision-based inertial system for mobile robots. In: Proc. 2004 IEEE Int. Conf. on Robotics and Automation, pp. 409–415 (2004)Google Scholar
  8. 8.
    Gordon, I., Lowe, D.G.: Scene modelling, recognition and tracking with invariant image features. In: Proc. 3rd IEEE and ACM Int. Symp. on Mixed and Augmented Reality, pp. 110–119 (2004)Google Scholar
  9. 9.
    Zhou, F., Duh, H.B.L., Billinghurst, M.: Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR. In: ISMAR 2008: Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality, pp. 193–202. IEEE Computer Society, Washington, DC (2008)CrossRefGoogle Scholar
  10. 10.
    Reitmayr, G., Eade, E., Drummond, T.W.: Semi-automatic annotations in unknown environments. In: Proc. ISMAR 2007, Nara, Japan, pp. 67–70 (2007)Google Scholar
  11. 11.
    Tenmoku, R., Kanbara, M., Yokoya, N.: Annotating user-viewed objects for wearable AR systems. In: Proc. IEEE and ACM Int. Sympo. on Mixed Augmented Reality(ISMAR 2005), pp. 192–193 (2005)Google Scholar
  12. 12.
    Kazhdan, M., Bolitho, M., Hoppe, H.: Poisson surface reconstruction. In: Proc. Symposium on Geometry Processing, pp. 61–70 (2006)Google Scholar
  13. 13.
    Shamir, A.: A survey on mesh segmentation techniques. In: Computer Graphics Forum, vol. 27, pp. 1539–1556 (2008)Google Scholar
  14. 14.
    Lavoue, G., Dupont, F., Baskurt, A.: New CAD mesh segmentation method a, based on curvature tensor analysis  37, 975–987 (2005)Google Scholar
  15. 15.
    Mortara, M., Patan‘e, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Plumber: A method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies. In: Proc. ACM Symposium on Solid Modeling and Applications, pp. 139–158 (2004)Google Scholar
  16. 16.
    Kalvin, A., Taylor, R.: Superfaces: Polygonal mesh simplification with bounded error. IEEE Computer Graphics and Applications 16 (1996)Google Scholar
  17. 17.
    Zhang, E., Mischaikow, K., Turk, G.: Feature based surface parameterization and texture mapping, vol. 24, pp. 1–27 (2005)Google Scholar
  18. 18.
    Mangan, A.P., Whitaker, R.T.: Partitioning 3D surface meshes using watershed segmentation. IEEE Transactions on Visualization and Computer Graphics 5, 308–321 (1999)CrossRefGoogle Scholar
  19. 19.
    Zheng, B., Takamatsu, J., Ikeuchi, K.: 3D model segmentation and representation with implicit polynomials. IEICE Trans. Information and Systems E91-D, 1149–1158 (2008)CrossRefGoogle Scholar
  20. 20.
    Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 1362–1376 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sei Ikeda
    • 1
  • Yoshitsugu Manabe
    • 1
  • Kunihiro Chihara
    • 1
  1. 1.Nara Institute of Science and TechnologyIkomaJapan

Personalised recommendations