Visual Mapping and Multi-modal Localisation for Anywhere AR Authoring

  • Andrew P. Gee
  • Andrew Calway
  • Walterio Mayol-Cuevas
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6469)


This paper presents an Augmented Reality system that combines a range of localisation technologies that include GPS, UWB, user input and Visual SLAM to enable both retrieval and creation of annotations in most places. The system works for multiple users and enables sharing and visualizations of annotations with a control centre. The process is divided into two main steps i) global localisation and ii) 6D local mapping. For the case of visual relocalisation we develop and evaluate a method to rank local maps which improves performance over previous art. We demonstrate the system working over a wide area and for a range of environments.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fritz, G., Seifert, C., Paletta, L.: A mobile vision system for urban object detection with informative local descriptors. In: Int. Conf. on Computer Vision Systems (2006)Google Scholar
  2. 2.
    Hutchings, R., Mayol-Cuevas, W.: Building recognition for mobile devices: incorporating positional information with visual features. Technical Report CSTR-06-017, Dept. of Computer Science, University of Bristol (2005)Google Scholar
  3. 3.
    Höllerer, T.: User Interfaces for Mobile Augmented Reality Systems. PhD thesis. Columbia University (2004)Google Scholar
  4. 4.
    Höllerer, T., Wither, J., Diverdi, S.: Anywhere augmentation: Towards mobile augmented reality in unprepared environments. In: Loc. Based Services and TeleCartography (2007)Google Scholar
  5. 5.
    Schall, G., Mendez, E., Kruijff, E., Veas, E., Junghanns, S., Reitinger, B., Schmalstieg, D.: Handheld augmented reality for underground infrastructure visualization. Personal and Ubiquitous Computing 13 (2009)Google Scholar
  6. 6.
    Newman, J., Ingram, D., Hopper, A.: Augmented reality in a wide area sentient environment. In: Int. Symp. on Augmented Reality (2001)Google Scholar
  7. 7.
    Kourogi, M., Sakata, N., Okuma, T., Kurata, T.: Indoor/outdoor pedestrian navigation with an embedded GPS/RFID/self-contained sensor system. In: Int. Conf. on Artificial Reality and Telexistence (2006)Google Scholar
  8. 8.
    Wagner, M.: Building wide-area applications with the AR toolkit. In: Int. Augmented Reality Toolkit Workshop (2002)Google Scholar
  9. 9.
    Reitmayr, G., Schmalstieg, D.: Location based applications for mobile augmented reality. In: Australasian User Interface Conference (2003)Google Scholar
  10. 10.
    Nakazato, Y., Kanbara, M., Yokoya, N.: Localization system for large indoor environments using invisible markers. In: ACM Symp. on Virtual Reality Software and Tech. (2008)Google Scholar
  11. 11.
    Newman, J., Schall, G., Barakonyi, I., Andreas, S., Schmalstieg, D.: Wide-area tracking tools for augmented reality. In: Int. Conf. on Pervasive Computing (2006)Google Scholar
  12. 12.
    Wormell, D., Foxlin, E., Katzman, P.: Advanced inertial-optical tracking system for wide area mixed and augmented reality systems. In: Int. Immersive Projection Tech. Workshop/Eurographics Workshop on Virtual Environments (2007)Google Scholar
  13. 13.
    Banwell, T., Calway, A.: Combining absolute positioning and vision for wide area augmented reality. In: Int. Joint Conf. on Computer Vision, Imaging and Computer Graphics Theory and Applications (2010)Google Scholar
  14. 14.
    Castle, R., Klein, G., Murray, D.: Video-rate localization in multiple maps for wearable augmented reality. In: Int. Symp. on Wearable Computers (2008)Google Scholar
  15. 15.
    Efthymiou, C., Gormus, S., Fan, Z., Calway, A., Mayol-Cuevas, W., Doufexi, A.: Application of multiple-wireless to a visual localisation system for emergency services. In: IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications (2010)Google Scholar
  16. 16.
    Harmer, D., Russell, M., Frazer, E., Bauge, T., Ingram, S., Schmidt, N., Kull, B., Yarovoy, A., Nezirović, A., Xia, L., Dizdarević, V., Witrisal, K.: EUROPCOM: emergency ultrawideband radio for positioning and communications. In: IEEE Conf. on Ultra-Wideband (2008)Google Scholar
  17. 17.
    Davison, A., Mayol, W., Murray, D.: Real-time localisation and mapping with wearable active vision. In: Int. Symp. on Mixed and Augmented Reality (2003)Google Scholar
  18. 18.
    Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In: Int. Symp. on Mixed and Augmented Reality (2007)Google Scholar
  19. 19.
    Williams, B., Klein, G., Reid, I.: Real-time SLAM relocalisation. In: Int. Conf. on Computer Vision (2007)Google Scholar
  20. 20.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Int. Conf. on Computer Vision (2003)Google Scholar
  21. 21.
    Eade, E., Drummond, T.: Unified loop closing and recovery for real time monocular SLAM. In: British Machine Vision Conf. (2008)Google Scholar
  22. 22.
    Chekhlov, D., Mayol-Cuevas, W., Calway, A.: Appearance based indexing for relocalisation in real-time visual SLAM. In: British Machine Vision Conf. (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andrew P. Gee
    • 1
  • Andrew Calway
    • 1
  • Walterio Mayol-Cuevas
    • 1
  1. 1.Dept. of Computer ScienceUniversity of BristolUK

Personalised recommendations