Advertisement

Dynamic Subspace Update with Incremental Nyström Approximation

  • Hongyu Li
  • Lin Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6469)

Abstract

Low rank approximation methods, e.g. the Nyström method, are often used to speed up eigen-decomposition of kernel matrices. However, it cannot effectively update the extracted subspaces when datasets dynamically increase with time. In this paper, we propose an incremental Nyström method for dynamic learning. Experimental results demonstrate the feasibility and effectiveness of the proposed method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, K., Tsang, I.W., Kwok, J.T.: Improved nyström low-rank approximation and error analysis. In: ICML 2008: Proceedings of the 25th International Conference on Machine Learning, pp. 1232–1239. ACM, New York (2008)CrossRefGoogle Scholar
  2. 2.
    Fowlkes, C., Belongie, S., Malik, J.: Efficient spatiotemporal grouping using the nystrom method. In: Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2001, vol. 1, pp. 231–238 (2001)Google Scholar
  3. 3.
    Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the nyström method. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 214–225 (2004)CrossRefGoogle Scholar
  4. 4.
    Williams, C., Seeger, M.: Using the nyström method to speed up kernel machines. In: Advances in Neural Information Processing Systems 13 (2001)Google Scholar
  5. 5.
    Heath, M.-T.: Scientific Computing:An Introduction Survey. The McGraw-Hill Companies, Inc., New York (2002)Google Scholar
  6. 6.
    Scholkopf, B., Smola, A.: Learning with kernels. The MIT press, Cambridge (2002)zbMATHGoogle Scholar
  7. 7.
    Baker, C.: The numerical treatment of integral equations. Clarendon Press, Oxford (1977)zbMATHGoogle Scholar
  8. 8.
    Wolf, L., Shashua, A.: Learning over sets using kernel principal angles. J. Mach. Learn. Res. 4, 913–931 (2003)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Lee, K., Ho, J., Kriegman, D.: Acquiring Linear Subspaces for Face Recognition under Variable Lighting. IEEE Trans. Pattern Anal. Mach. Intelligence 27, 684–698 (2005)CrossRefGoogle Scholar
  10. 10.
    Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23, 643–660 (2001)CrossRefGoogle Scholar
  11. 11.
    Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. Int. J. Comput. Vision 77, 125–141 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hongyu Li
    • 1
  • Lin Zhang
    • 1
  1. 1.School of Software EngineeringTongji UniversityShanghaiChina

Personalised recommendations