Recognition and Analysis of Objects in Medieval Images

  • Pradeep Yarlagadda
  • Antonio Monroy
  • Bernd Carque
  • Björn Ommer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6469)


Rapid and cost effective digitization techniques have lead to the creation of large volumes of visual data in recent times. For providing convenient access to such databases, it is crucial to develop approaches and systems which search the database based on the representational content of images rather than the textual annotations associated with the images. The success of such systems depends on one key component: category level object detection in images.

In this contribution, we study the problem of object detection in the application context of digitized versions of ancient manuscripts. To this end, we present a benchmark image dataset of medieval images with groundtruth information for objects such as ‘crowns’ in the image dataset. Such a benchmark dataset allows for a quantitative comparison of object detection algorithms in the domain of cultural heritage, as illustrated by our experiments. We describe a detection system that accurately localizes objects in the database. We utilize shape information of the objects to analyze the type-variability of the category and to manually identify various sub-categories. Finally, we report a quantitative evaluation of the automatic classification of object into various sub-categories.


Cultural Heritage Object Detection Benchmark Dataset Representational Content Precision Recall Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baca, M., Harpring, P., Lanzi, E., McRae, L., Whiteside, A.: Cataloging Cultural Objects. A Guide to Describing Cultural Works and Their Images (2006)Google Scholar
  2. 2.
    Kerscher, G.: Thesaurus-Verwendung und internationalisierung in Bilddatenbanken. Kunstchronik 57, 606–608 (2008)Google Scholar
  3. 3.
    van Straten, R.: Iconography, Indexing, ICONCLASS. A Handbook (1994)Google Scholar
  4. 4.
  5. 5.
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Intl. Conf. on Comp. Vision and Pat. Rec. (2003)Google Scholar
  10. 10.
    Ferrari, V., Jurie, F., Schmid, C.: From images to shape models for object detection. In: Intl. Journal of Comp. Vision pp. 40–82 (2009)Google Scholar
  11. 11.
    Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: Europ. Conf. on Comp. Vision (2004)Google Scholar
  12. 12.
    Ommer, B., Malik, J.: Multi-scale object detection by clustering lines. In: Intl. Conf. on Comp. Vision and Pat. Rec. (2009)Google Scholar
  13. 13.
    Lampert, C., Blaschko, M., Hofmann, T.: Beyond sliding windows: Object localization by efficient subwindow search. In: Intl. Conf. on Comp. Vision and Pat. Rec. (2008)Google Scholar
  14. 14.
    Pietzsch, E., Effinger, M., Spyra, U.: Digitalisierung und Erschließung spätmittelalterlicher Bilderhandschriften aus der Bibliotheca Palatina. In: Thaller, H. (ed.) Digitale Bausteine FÜR Die Geisteswissenschaftliche ForschungGoogle Scholar
  15. 15.
    Schramm, P.E.: Herrschaftszeichen und Staatssymbolik, vol.3 (1954)Google Scholar
  16. 16.
    Schwedler, G., Meyer, C., Zimmermann, K. (eds.): Rituale und die Ordnung der Welt (2008)Google Scholar
  17. 17.
    Fowlkes, C., Tal, D., Martin, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Intl Conf. on Comp. Vision (2001)Google Scholar
  18. 18.
    Roberts, L.: Machine perception of three-dimensional solids. Optical and Electro-Optical Information Processing, 159–197 (1965)Google Scholar
  19. 19.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pat. Analysis and Machine Intelligence, 679–714 (1986)Google Scholar
  20. 20.
    Arbelaez, P., Fowlkes, C., Maire, M., Malik, J.: Using contours to detect and localize junctions in natural images. In: Intl. Conf. on Comp. Vision and Pat. Rec. (2008)Google Scholar
  21. 21.
    Kovesi, P.D.: MATLAB and Octave functions for computer vision and image processing,
  22. 22.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Intl. Conf. on Comp. Vision and Pat. Rec. (2005)Google Scholar
  23. 23.
    Saurma-Jeltsch, L.E.: Spätformen mittelalterlicher Buchherstellung. Bilderhandschriften aus der Werkstatt Diebold Laubers in Hagenau, vol.2 (2001)Google Scholar
  24. 24.
    Maji, S., Berg, A., Malik, J.: Classification using intersection kernel support vector machines is efficient. In: Intl. Conf. on Comp. Vision and Pat. Rec. (2008)Google Scholar
  25. 25.
    Davison, A., Hinkley, D.: Bootstrap Methods and their Application.Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge(1997)Google Scholar
  26. 26.
    Felzenszwalb, P.F., Girshick, R.B., Mcallester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine Intelligence (2010)Google Scholar
  27. 27.
    Petersohn, J.: Über monarchische Insignien und ihre Funktion im mittelalterlichen Reich. Historische Zeitschrift 266, 47–96 (1998)CrossRefGoogle Scholar
  28. 28.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pradeep Yarlagadda
    • 1
  • Antonio Monroy
    • 1
  • Bernd Carque
    • 1
  • Björn Ommer
    • 1
  1. 1.Interdisciplinary Center for Scientific ComputingUniversity of HeidelbergGermany

Personalised recommendations