Advertisement

Real-Time Camera Tracking Using a Global Localization Scheme

  • Yue Yiming
  • Liang Xiaohui
  • Liu Chen
  • Liu Jie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6469)

Abstract

Real-time camera tracking in previously unknown scene is attractive to a wide spectrum of computer vision applications. In Recent years, Simultaneous Localization and Mapping (SLAM) system and its varieties have shown extraordinary camera tracking performance. However, the robustness of these systems to rapid and erratic camera motion is still limited because of the typically used Local Localization scheme. To overcome this limitation, we present an efficient online camera tracking algorithm using a Global Localization scheme which matches features in a global way through two steps: First, coarse matches are obtained through nearest feature descriptor search. Afterwards, a Game Theoretic approach is exploited to eliminate the incorrect matches and the left correct matches can be used to estimate the camera pose. Result shows our camera tracking algorithm has significantly improved the robustness of camera tracking system to rapid and erratic camera motion.

Keywords

Augmented Reality Rigid Transformation Structure From Motion Input Frame Computer Vision Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004), ISBN: 0521540518CrossRefzbMATHGoogle Scholar
  2. 2.
    Wong, K.Y.K., Cipolla, R.: Structure and motion from silhouettes. In: Proceedings of the 8th IEEE International Conference on Computer Vision (ICCV 2001), vol. 2, pp. 217–222 (2001)Google Scholar
  3. 3.
    Pollefeys, M., Gool, L.V., Vergauwen, M.F.V., Cornelis, K., Tops, J., Koch, R.: Visual modeling with a handheld camera. International Journal of Computer Vision 59, 207–232 (2004)CrossRefGoogle Scholar
  4. 4.
    Davison, A., Reid, I., Molton, N., Stasse, O.: Monoslam: Real-time single camera slam. IEEE Trans. Pattern Analysis and Machine Intelligence 29, 1052–1067 (2007)CrossRefGoogle Scholar
  5. 5.
    Chekhlov, D., Pupilli, M., Mayol-Cuevas, W., Calway, A.: Real-time and robust monocular slam using predictive multi-resolution descriptors. In: Proceedings of the 2nd International Symposium on Visual Computing, pp. 276–285 (2006)Google Scholar
  6. 6.
    Williams, B., Klein, G., Reid, I.: Real-time slam relocalisation. In: Proceedings of 11th IEEE International Conference on Computer Vision (ICCV 2007), pp. 1–8 (2007)Google Scholar
  7. 7.
    Eade, E., Drummon, T.: Scalable monocular slam. In: Proceedings of IEEE Intl. Conference on Computer Vision and Pattern Recognition (CVPR 2006), pp. 469–476 (2006)Google Scholar
  8. 8.
    Klein, G., Murray, D.: Parallel tracking and mapping for small ar workspaces. In: Proceedings of International Symposium on Mixed and Augmented Reality (ISMAR 2007), pp. 1–10 (2007)Google Scholar
  9. 9.
    Klein, G., Murray, D.: Improving the agility of keyframe-based slam. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 802–815. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Dong, Z.L., Zhang, G.F., Jia, J.Y., Bao, H.J.: Keyframe-based real-time camera tracking. In: Proceedings of IEEE International Conference on Computer Vision (ICCV 2009), pp. 1538–1545 (2009)Google Scholar
  11. 11.
    Se, S., Lowe, D., Little, J.: Vision-based global localization and mapping for mobile robots. IEEE Transactions on Robotics 21, 364–375 (2005)CrossRefGoogle Scholar
  12. 12.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91–100 (2004)CrossRefGoogle Scholar
  13. 13.
    Calonder, M., Lepetit, V., Fua, P.: Keypoint signatures for fast learning and recognition. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 58–71. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. Transactions on Pattern Analysis and Machine Intelligence 28, 1465–1479 (2006)CrossRefGoogle Scholar
  15. 15.
    Ozuysal, M., Fua, P., Lepetit, V.: Fast keypoint recognition in ten lines of code. In: Proceedings of 20th Conference on Computer Vision and Pattern Recognition (CVPR 2007), pp. 1–8 (2007)Google Scholar
  16. 16.
    Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 448–461 (2010)CrossRefGoogle Scholar
  17. 17.
    Calonder, M., Lepetit, V., Fua, P.: Pareto-optimal dictionaries for signatures. In: Proceedings of 23rd Conference on Computer Vision and Pattern Recognition, CVPR 2010 (2010)Google Scholar
  18. 18.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. Computer Vision and Image Understanding (CVIU) 110, 346–359 (2008)CrossRefGoogle Scholar
  19. 19.
    Fischler, A.M., Bolles, C.R.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24, 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Albarelli, A., Rodol, E., Torsello, A.: A game-theoretic approach to fine surface registration without initial motion estimation. In: Proceedings of 23rd Conference on Computer Vision and Pattern Recognition, CVPR 2010 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yue Yiming
    • 1
  • Liang Xiaohui
    • 1
  • Liu Chen
    • 1
  • Liu Jie
    • 1
  1. 1.State Key Lab. of Virtual Reality Technology and SystemsBeihang UniversityBeijingP.R. China

Personalised recommendations