Realistic Modeling of Water Droplets for Monocular Adherent Raindrop Recognition Using Bézier Curves

  • Martin Roser
  • Julian Kurz
  • Andreas Geiger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6469)


In this paper, we propose a novel raindrop shape model for the detection of view-disturbing, adherent raindrops on inclined surfaces. Whereas state-of-the-art techniques do not consider inclined surfaces because they assume the droplets as sphere sections with equal contact angles, our model incorporates cubic Bézier curves that provide a low dimensional and physically interpretable representation of a raindrop surface. The parameters are empirically deduced from numerous observations of different raindrop sizes and surface inclination angles. It can be easily integrated into a probabilistic framework for raindrop recognition, using geometrical optics to simulate the visual raindrop appearance. In comparison to a sphere section model, the proposed model yields an improved droplet surface accuracy up to three orders of magnitude.


Contact Angle Inclination Angle Water Droplet Geometrical Optic Incline Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Farin, G.: Curves and surfaces for CAGD: a practical guide. Morgan Kaufmann Publishers Inc., San Francisco (2002)Google Scholar
  4. 4.
    Garg, K., Nayar, S.K.: Detection and removal of rain from videos. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2004), vol. I, pp. 528–535 (June 2004)Google Scholar
  5. 5.
    Garg, K., Nayar, S.K.: When does a camera see rain? In: IEEE International Conference on Computer Vision (ICCV 2005), vol. 2, pp. 1067–1074 (October 2005)Google Scholar
  6. 6.
    Garg, K., Nayar, S.K.: Photorealistic rendering of rain streaks. ACM Transactions on Graphics (July 2006)Google Scholar
  7. 7.
    Garg, K., Nayar, S.K.: Vision and rain. Internatl. Journal of Computer Vision 75(1), 3–27 (2007)CrossRefGoogle Scholar
  8. 8.
    Halimeh, J., Roser, M.: Raindrop detection on car windshields using geometric-photometric environment construction and intensity-based correlation. In: IEEE Intelligent Vehicle Symposium (IV 2009), Xi’an, China (2009)Google Scholar
  9. 9.
    Kurihata, H., Takahashi, T., Ide, I., Mekade, Y., Muraseand, H., Tamatsu, Y., Miyahara, T.: Rainy weather recognition from in-vehicle camera images for driver assistance. In: IEEE Intelligent Vehicles Symposium (IV 2005), pp. 205–210 (2005)Google Scholar
  10. 10.
    Marquardt, D.: An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal of Applied Mathematics 11, 431–441 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. International Journal of Computer Vision 48(3), 233–254 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Roser, M., Geiger, A.: Video-based raindrop detection for improved image registration. In: IEEE Workshop on Video-Oriented Object and Event Classification (in conjunction with ICCV 2009) (2009)Google Scholar
  13. 13.
    Tanaka, Y., Yamashita, A., Kaneko, T., Miura, K.T.: Removal of adherent waterdrops from images acquired with a stereo camera system. IEICE - Transactions on Information Systems E89-D(7), 2021–2027 (2006)CrossRefGoogle Scholar
  14. 14.
    Teunissen, P.J.G.: Adjustment theory: an introduction. Delft University Press, Postbus 98, 2600 MG Delft (2000)Google Scholar
  15. 15.
    Vasconcelos, N., Lippman, A.: Empirical bayesian em-based motion segmentation. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition, Puerto Rico, pp. 527–532 (1997)Google Scholar
  16. 16.
    Yamashita, A., Fukuchi, I., Kaneko, T., Miura, K.T.: Removal of adherent noises from image sequences by spatio-temporal image processing. In: IEEE International Conference on Robotics and Automation (ICRA 2008), pp. 2386–2391 (May 2008)Google Scholar
  17. 17.
    Yamashita, A., Harada, T., Kaneko, T., Miura, K.T.: Removal of adherent noises from images of dynamic scenes by using a pan-tilt camera. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2004), September- October 2, vol. 1, pp. 1:437–1:442 (2004)Google Scholar
  18. 18.
    Yamashita, A., Kuramoto, M., Kaneko, T., Miura, K.T.: A virtual wiper - restoration of deteriorated images by using multiple cameras. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), vol. 3, pp. 4:3126–4:3131 (October 2003)Google Scholar
  19. 19.
    Zhang, Y., Yang, J., Liu, K., Zhang, X.: Self-detection of optical contamination or occlusion in vehicle vision systems. Journal of Optical Engineering 47(6), 067006 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Martin Roser
    • 1
  • Julian Kurz
    • 1
  • Andreas Geiger
    • 1
  1. 1.Department of Measurement and ControlKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations