Object Discrimination and Tracking in the Surroundings of a Vehicle by a Combined Laser Scanner Stereo System

  • Mathias Haberjahn
  • Ralf Reulke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6469)


The use of sensor data for observing the surrounding environment of a vehicle is becoming increasingly popular. Especially for detecting dangerous situations, which occur too fast for the human senses, sensor systems are needed. In the following paper such a sensor system consisting of a stereo camera and a multilayer laser scanner mounted in front of a test vehicle is introduced. Both sensors are used to detect and track obstacles and other traffic objects independent from each other for future data fusion. An overview of the complete process for the object discrimination including a novel approach for a sensor cross calibration and a new method for the object refinement and the object tracking is given. The effectiveness of the algorithms are tested with real road reference data, obtained through highly precise GPS data.


stereo vision laser scanner segmentation object discrimination tracking competitive data fusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boehringer, F.: Gleisselektive Ortung von Schienenfahrzeugen mit bordautonomer Sensorik. Universitt Karlsruhe, PhD: 178 (2008)Google Scholar
  2. 2.
    Brown, D.C.: Close-range camera calibration. In: Photogrammetric Engineering, pp. 855–866 (1971)Google Scholar
  3. 3.
    Catala Prat, A., Reulke, R., Kstner, F.: Early Detection of hazards in driving situations trough multi sensor fusion. In: Proc. of FISITA World Automotive Congress, pp. 527–536 (2008)Google Scholar
  4. 4.
    Fang, Y., Masaki, I., Horn, B.: Depth-based target segmentation for intelligent vehicles:fusion of radar and binocular stereo. IEEE Trans. Intell. Transp. Syst. 3(3), 196–202 (2002)CrossRefGoogle Scholar
  5. 5.
    Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct Least Square Fitting of Ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(5), 476–480 (1999)CrossRefGoogle Scholar
  6. 6.
    Fuerstenberg, K.C., Dietmayer, K.: Pedestrian Recognition and Tracking of Vehicles using a vehicle based Multilayer Laserscanner. In: 10th World Congress on Intelligent Transport Systems, Madrid, Spain (2003)Google Scholar
  7. 7.
    Haberjahn, M.: Cross-Kalibrierung eines Mehrzeilen-Laserscanner- und Stereokamera-Systems zur Fahrzeugumfelderfassung. 3D-Nordost 2009, Berlin, Germany (2009)Google Scholar
  8. 8.
    Horn, B.K.P.: Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Amer. A 4(4), 629–642 (1987)CrossRefGoogle Scholar
  9. 9.
    Huang, Y., Fu, S., Thompson, C.: Stereovision-Based Object Segmentation for Automotive Applications. EURASIP Journal on Applied Signal Processing, 2322–2329 (2005)Google Scholar
  10. 10.
    Kormann, B., Neve, A., Klinker, G., Stechele, W.: Stereo Vision Based Vehicle Detection. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPH 2010. Angers, France, pp. 17–21 (2010)Google Scholar
  11. 11.
    Kumar, S., Gupta, D., Yadav, S.: Sensor Fusion of Laser & Stereo Vision Camera for Depth Estimation and Obstacle Avoidance. International Journal of Computer Application 1(26) (2010)Google Scholar
  12. 12.
    Perollaz, M., Labayrade, R., Royere, C., Hautière, N., Aubert, D.: Long Range Obstacles Detection Using Laser Scanner and Stereovision. In: Procs. IEEE Intelligent Vehicles Symposium 2006, Tokyo, Japan, pp. 182–187 (2006)Google Scholar
  13. 13.
    Pilu, M.: Uncalibrated Stereo Correspondence by Singular Value Decomposition. Technical Report HPL-97-96, Digital Media Department, HP Laboratories Bristol (1997)Google Scholar
  14. 14.
    Rietdorf, A.: Automatisierte Auswertung und Kalibrierung von scannenden Messsystemen mit tachymetrischem Messprinzip. PhD thesis, Technische Universitt Berlin (2005)Google Scholar
  15. 15.
    Santolaria, J., Pastor, J.J., Brosed, F.J., Aguilar, J.J.: A one-step intrinsic and extrinsic calibration method for laser line scanner operation in coordinate measuring machines. Electronic Journals - Measurement Science and Technology 20 (2009)Google Scholar
  16. 16.
    Wender, S., Dietmayer, K.: 3D Vehicle Detection using a Laser Scanner and a Video Camera. In: 6th European Congress on ITS, Aalborg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mathias Haberjahn
    • 1
  • Ralf Reulke
    • 1
  1. 1.German Aerospace CenterInstitute of Transportation SystemsBerlinGermany

Personalised recommendations