Skip to main content

The Six Point Algorithm Revisited

  • Conference paper
Computer Vision – ACCV 2010 Workshops (ACCV 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6469))

Included in the following conference series:

Abstract

This paper presents an algorithm for estimating camera focal length from tentative matches in a pair of images, which works robustly in practical situations such as automatic computation of structure and camera motion from unknown photographs, e.g. from the web or from various instruments mounted on a vehicle. We extend the standard 6-pt algorithm based on the observations: (i) the quality of the estimation of this algorithm is strongly correlated with the ratio of the singular values of the essential matrix computed from inliers, which is calibrated by using the estimated focal length, returned by RANSAC and (ii) the reprojection error of the affine camera model, fit to the inliers, predicts the uncertainty in the estimated focal length. Furthermore, for scenes with dominant plane we propose a novel algorithm calculating relative orientation and unknown focal length given a plane homography and a single off the plane point correspondence. The performance of the proposed algorithm is demonstrated on a set of real images having different focal lengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Snavely, N., Seitz, S.M., Szeliski, R.S.: Photo Tourism: Exploring image collections in 3D. In: SIGGRAPH, pp. 835–846. Implementation at, http://phototour.cs.washington.edu/bundler/

  2. Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for community photo collections. In: ICCV (2007)

    Google Scholar 

  3. Snavely, N., Seitz, S., Szeliski, R.: Skeletal graphs for efficient structure from motion. In: CVPR (2008)

    Google Scholar 

  4. Li, X., Wu, C., Zach, C., Lazebnik, S., Frahm, J.M.: Modeling and recognition of landmark image collections using iconic scene graphs. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 427–440. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Photosynth, http://photosynth.net

  6. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In: ICCV (2009)

    Google Scholar 

  7. Nister, D.: An efficient solution to the five-point relative pose. IEEE PAMI 26(6), 756–770 (2004)

    Article  Google Scholar 

  8. Stewénius, H., Engels, C., Nister, D.: Recent developments on direct relative orientation. ISPRS J. of Photogrammetry and Remote Sensing 60, 284–294 (2006)

    Article  Google Scholar 

  9. Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to the 5-pt and 6-pt relative pose problems. In: BMVC 2008 (2008)

    Google Scholar 

  10. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  11. Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  12. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC 2002, pp. 384–393 (2002)

    Google Scholar 

  13. Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. IJCV 60(1), 63–86 (2004)

    Article  Google Scholar 

  14. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). CVIU 110(3), 346–359 (2008)

    Google Scholar 

  15. Hartley, R.: In defence of the 8-point algorithm. In: CVPR 1995, pp. 1064–1070 (1995)

    Google Scholar 

  16. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  17. Stewenius, H., Nister, D., Kahl, F., Schaffalitzky, F.: A minimal solution for relative pose with unknown focal length. In: CVPR 2005, pp. 789–794 (2005)

    Google Scholar 

  18. Li, H.: A simple solution to the six-point two-view focal-length problem. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 200–213. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Kahl, F., Triggs, B.: Critical motions in Euclidean structure from motion. In: CVPR 1999, pp. 366–372 (1999)

    Google Scholar 

  20. Fitzgibbon, A., Robertson, D., Criminisi, A., Ramalingam, S., Blake, A.: Learning priors for calibrating families of stereo cameras. In: ICCV 2007 (2007)

    Google Scholar 

  21. Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a dominant plane. In: CVPR 2005, pp. 772–779 (2005)

    Google Scholar 

  22. Stewenius, H., Nister, D., Oskarsson, M., Astrom, K.: Solutions to minimal generalized relative pose problems. In: OMNIVIS 2005 (2005)

    Google Scholar 

  23. Kukelova, Z., Pajdla, T.: A minimal solution to the autocalibration of radial distortion. In: CVPR 2007 (2007)

    Google Scholar 

  24. Bujnak, M., Kukelova, Z., Pajdla, T.: A general solution to the P4P problem for camera with unknown focal length. In: CVPR 2008 (2008)

    Google Scholar 

  25. Byröd, M., Kukelova, Z., Josephson, K., Pajdla, T., Åström, K.: Fast and robust numerical solutions to minimal problems for cameras with radial distortion. In: CVPR 2008 (2008)

    Google Scholar 

  26. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn., vol. 185. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  27. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, Heidelberg (2007)

    Book  MATH  Google Scholar 

  28. Byröd, M., Josephson, K., Åström, K.: Improving numerical accuracy of Gröbner basis polynomial equation solver. In: ICCV 2007 (2007)

    Google Scholar 

  29. Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Sivic, J., Zisserman, A.: Video google: Efficient visual search of videos. In: CLOR 2006, pp. 127–144 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Torii, A., Kukelova, Z., Bujnak, M., Pajdla, T. (2011). The Six Point Algorithm Revisited. In: Koch, R., Huang, F. (eds) Computer Vision – ACCV 2010 Workshops. ACCV 2010. Lecture Notes in Computer Science, vol 6469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22819-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22819-3_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22818-6

  • Online ISBN: 978-3-642-22819-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics