The Six Point Algorithm Revisited

  • Akihiko Torii
  • Zuzana Kukelova
  • Martin Bujnak
  • Tomas Pajdla
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6469)


This paper presents an algorithm for estimating camera focal length from tentative matches in a pair of images, which works robustly in practical situations such as automatic computation of structure and camera motion from unknown photographs, e.g. from the web or from various instruments mounted on a vehicle. We extend the standard 6-pt algorithm based on the observations: (i) the quality of the estimation of this algorithm is strongly correlated with the ratio of the singular values of the essential matrix computed from inliers, which is calibrated by using the estimated focal length, returned by RANSAC and (ii) the reprojection error of the affine camera model, fit to the inliers, predicts the uncertainty in the estimated focal length. Furthermore, for scenes with dominant plane we propose a novel algorithm calculating relative orientation and unknown focal length given a plane homography and a single off the plane point correspondence. The performance of the proposed algorithm is demonstrated on a set of real images having different focal lengths.


Focal Length Image Pair Camera Motion Fundamental Matrix Epipolar Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Snavely, N., Seitz, S.M., Szeliski, R.S.: Photo Tourism: Exploring image collections in 3D. In: SIGGRAPH, pp. 835–846. Implementation at,
  2. 2.
    Goesele, M., Snavely, N., Curless, B., Hoppe, H., Seitz, S.M.: Multi-view stereo for community photo collections. In: ICCV (2007)Google Scholar
  3. 3.
    Snavely, N., Seitz, S., Szeliski, R.: Skeletal graphs for efficient structure from motion. In: CVPR (2008)Google Scholar
  4. 4.
    Li, X., Wu, C., Zach, C., Lazebnik, S., Frahm, J.M.: Modeling and recognition of landmark image collections using iconic scene graphs. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 427–440. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a day. In: ICCV (2009)Google Scholar
  7. 7.
    Nister, D.: An efficient solution to the five-point relative pose. IEEE PAMI 26(6), 756–770 (2004)CrossRefGoogle Scholar
  8. 8.
    Stewénius, H., Engels, C., Nister, D.: Recent developments on direct relative orientation. ISPRS J. of Photogrammetry and Remote Sensing 60, 284–294 (2006)CrossRefGoogle Scholar
  9. 9.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to the 5-pt and 6-pt relative pose problems. In: BMVC 2008 (2008)Google Scholar
  10. 10.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)CrossRefGoogle Scholar
  12. 12.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: BMVC 2002, pp. 384–393 (2002)Google Scholar
  13. 13.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. IJCV 60(1), 63–86 (2004)CrossRefGoogle Scholar
  14. 14.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). CVIU 110(3), 346–359 (2008)Google Scholar
  15. 15.
    Hartley, R.: In defence of the 8-point algorithm. In: CVPR 1995, pp. 1064–1070 (1995)Google Scholar
  16. 16.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  17. 17.
    Stewenius, H., Nister, D., Kahl, F., Schaffalitzky, F.: A minimal solution for relative pose with unknown focal length. In: CVPR 2005, pp. 789–794 (2005)Google Scholar
  18. 18.
    Li, H.: A simple solution to the six-point two-view focal-length problem. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 200–213. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Kahl, F., Triggs, B.: Critical motions in Euclidean structure from motion. In: CVPR 1999, pp. 366–372 (1999)Google Scholar
  20. 20.
    Fitzgibbon, A., Robertson, D., Criminisi, A., Ramalingam, S., Blake, A.: Learning priors for calibrating families of stereo cameras. In: ICCV 2007 (2007)Google Scholar
  21. 21.
    Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a dominant plane. In: CVPR 2005, pp. 772–779 (2005)Google Scholar
  22. 22.
    Stewenius, H., Nister, D., Oskarsson, M., Astrom, K.: Solutions to minimal generalized relative pose problems. In: OMNIVIS 2005 (2005)Google Scholar
  23. 23.
    Kukelova, Z., Pajdla, T.: A minimal solution to the autocalibration of radial distortion. In: CVPR 2007 (2007)Google Scholar
  24. 24.
    Bujnak, M., Kukelova, Z., Pajdla, T.: A general solution to the P4P problem for camera with unknown focal length. In: CVPR 2008 (2008)Google Scholar
  25. 25.
    Byröd, M., Kukelova, Z., Josephson, K., Pajdla, T., Åström, K.: Fast and robust numerical solutions to minimal problems for cameras with radial distortion. In: CVPR 2008 (2008)Google Scholar
  26. 26.
    Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 2nd edn., vol. 185. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  27. 27.
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. Springer, Heidelberg (2007)CrossRefzbMATHGoogle Scholar
  28. 28.
    Byröd, M., Josephson, K., Åström, K.: Improving numerical accuracy of Gröbner basis polynomial equation solver. In: ICCV 2007 (2007)Google Scholar
  29. 29.
    Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  30. 30.
    Sivic, J., Zisserman, A.: Video google: Efficient visual search of videos. In: CLOR 2006, pp. 127–144 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Akihiko Torii
    • 1
  • Zuzana Kukelova
    • 2
  • Martin Bujnak
  • Tomas Pajdla
    • 2
  1. 1.Tokyo Institute of TechnologyTokyoJapan
  2. 2.CMP, Czech Technical University in PraguePragueCzech Republic

Personalised recommendations