Advertisement

Round Optimal Blind Signatures

  • Sanjam Garg
  • Vanishree Rao
  • Amit Sahai
  • Dominique Schröder
  • Dominique Unruh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6841)

Abstract

Constructing round-optimal blind signatures in the standard model has been a long standing open problem. In particular, Fischlin and Schröder recently ruled out a large class of three-move blind signatures in the standard model (Eurocrypt’10). In particular, their result shows that finding security proofs for the well-known blind signature schemes by Chaum, and by Pointcheval and Stern in the standard model via black-box reductions is hard. In this work we propose the first roundoptimal, i.e., two-move, blind signature scheme in the standard model (i.e., without assuming random oracles or the existence of a common reference string). Our scheme relies on the Decisional Diffie Hellman assumption and the existence of sub-exponentially hard 1-to-1 one way functions. This scheme is also secure in the concurrent setting.

Keywords

Signature Scheme Random Oracle Blind Signature Commitment Scheme Oblivious Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdalla, M., Namprempre, C., Neven, G.: On the (im)possibility of blind message authentication codes. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 262–279. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Abe, M.: A secure three-move blind signature scheme for polynomially many signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)Google Scholar
  4. 4.
    Abe, M., Haralambiev, K., Ohkubo, M.: Signing on elements in bilinear groups for modular protocol design. IACR ePrint 2010/133 (2010)Google Scholar
  5. 5.
    Abe, M., Ohkubo, M.: A framework for universally composable non-committing blind signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 435–450. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The one-more-RSA-inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology 16(3), 185–215 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-diffie-hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Brands, S., Paquin, C.: U-prove cryptographic specification v1.0 (March 2010), http://connect.microsoft.com/site642/Downloads/DownloadDetails.aspx?DownloadID=26953
  9. 9.
    Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates: Building in Privacy. MIT Press, Cambridge (2000)Google Scholar
  10. 10.
    Camenisch, J., Groß, T.: Efficient attributes for anonymous credentials. In: ACM CCS 2008, pp. 345–356. ACM Press, New York (2008)Google Scholar
  11. 11.
    Camenisch, J., Koprowski, M., Warinschi, B.: Efficient blind signatures without random oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO 1982, pp. 199–203. Plenum Press, New York (1983)Google Scholar
  14. 14.
    Chaum, D.: Blind signature system. In: CRYPTO 1983, p. 153. Plenum Press, New York (1984)Google Scholar
  15. 15.
    Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Comput. 36(6), 1513–1543 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Fischlin, M.: Round-optimal composable blind signatures in the common reference string model. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 60–77. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Fischlin, M., Schröder, D.: Security of blind signatures under aborts. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 297–316. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Fischlin, M., Schröder, D.: On the impossibility of three-move blind signature schemes. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 197–215. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Fuchsbauer, G.: Automorphic signatures in bilinear groups and an application to round-optimal blind signatures. IACR ePrint 2009/320 (2009)Google Scholar
  20. 20.
    Garg, S., Rao, V., Sahai Round, A.: optimal blind signatures in the standard model (2011) (manuscript)Google Scholar
  21. 21.
    Garg, S., Rao, V., Sahai, A., Schröder, D., Unruh, D.: Round optimal blind signatures. IACR ePrint (2011)Google Scholar
  22. 22.
    Ghadafi, E., Smart, N.: Efficient two-move blind signatures in the common reference string model. IACR ePrint 2010/568 (2010)Google Scholar
  23. 23.
    Hazay, C., Katz, J., Koo, C.Y., Lindell, Y.: Concurrently-secure blind signatures without random oracles or setup assumptions. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 323–341. Springer, Heidelberg (2007)Google Scholar
  24. 24.
    Horvitz, O., Katz, J.: Universally-composable two-party computation in two rounds. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 111–129. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  25. 25.
    Juels, A., Luby, M., Ostrovsky, R.: Security of blind digital signatures (extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)Google Scholar
  26. 26.
    Katz, J., Schröder, D., Yerukhimovich, A.: Impossibility of blind signature from one-way permutation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 615–629. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Kiayias, A., Zhou, H.S.: Concurrent blind signatures without random oracles. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 49–62. Springer, Heidelberg (2006)Google Scholar
  28. 28.
    Kiayias, A., Zhou, H.S.: Equivocal blind signatures and adaptive UC-security. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 340–355. Springer, Heidelberg (2008)Google Scholar
  29. 29.
    Lindell, Y.: Bounded-concurrent secure two-party computation without setup assumptions. In: STOC 2003, pp. 683–692. ACM Press, New York (2003)CrossRefGoogle Scholar
  30. 30.
    Lindell, Y.: Lower bounds for concurrent self composition. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Meiklejohn, S., Shacham, H., Freeman, D.M.: Limitations on transformations from composite-order to prime-order groups: The case of round-optimal blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 519–538. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  32. 32.
    Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: SODA 2001, pp. 448–457 (2001)Google Scholar
  33. 33.
    Okamoto, T.: Efficient blind and partially blind signatures without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  34. 34.
    Pass, R.: Limits of provable security from standard assumptions. In: STOC 2011. ACM Press, New York (to appear, 2011)Google Scholar
  35. 35.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  36. 36.
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: FOCS 2002, pp. 366–375. IEEE, Los Alamitos (2002)Google Scholar
  37. 37.
    Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  38. 38.
    Schröder, D., Unruh, D.: Round optimal blind signatures. IACR ePrint (2011)Google Scholar
  39. 39.
    Schröder, D., Unruh, D.: Security of blind signatures revisited. IACR ePrint (2011)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Sanjam Garg
    • 1
  • Vanishree Rao
    • 1
  • Amit Sahai
    • 1
  • Dominique Schröder
    • 2
  • Dominique Unruh
    • 3
  1. 1.University of CaliforniaLos AngelesUSA
  2. 2.University of MarylandUSA
  3. 3.University of TartuEstonia

Personalised recommendations