Advertisement

Cryptography with Tamperable and Leaky Memory

  • Yael Tauman Kalai
  • Bhavana Kanukurthi
  • Amit Sahai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6841)

Abstract

A large and growing body of research has sought to secure cryptographic systems against physical attacks. Motivated by a large variety of real-world physical attacks on memory, an important line of work was initiated by Akavia, Goldwasser, and Vaikuntanathan [1] where security is sought under the assumptions that: (1) all memory is leaky, and (2) leakage can be an arbitrarily chosen (efficient) function of the memory.

However, physical attacks on memory are not limited to leakagethrough side-channels, but can also include active tampering attacks through a variety of physical attacks, including heat and EM radiation. Nevertheless, protection against the analogous model for tampering – where (1) all memory is tamperable, and (2) where the tampering can be an arbitrarily chosen (efficient) function applied to the memory – has remained an elusive target, despite significant effort on tampering-related questions.

In this work, we tackle this question by considering a model where we assume that both of these pairs of statements are true – that all memory is both leaky and (arbitrarily) tamperable. Furthermore, we assume that this leakage and tampering can happen repeatedly and continually (extending the model of [10,7] in the context of leakage). We construct a signature scheme and an encryption scheme that are provably secure against such attacks, assuming that memory can be updated in a randomized fashion between episodes of tampering and leakage. In both schemes we rely on the linear assumption over bilinear groups.

We also separately consider a model where only continual and repeated tampering (but only bounded leakage) is allowed, and we are able to obtain positive results assuming only that “self-destruct” is possible, without the need for memory updates.

Our results also improve previous results in the continual leakage regime without tampering [10,7]. Whereas previous schemes secure against continual leakage (of arbitrary bounded functions of the secret key), could tolerate only 1/2 − ε leakage-rate between key updates under the linear assumption over bilinear groups, our schemes can tolerate 1 − ε leakage-rate between key updates, under the same assumption.

Keywords

Encryption Scheme Signature Scheme Security Parameter Linear Assumption Public Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Applebaum, B., Harnik, D., Ishai, Y.: Semantic security under related-key attacks and applications. Cryptology ePrint Archive, Report 2010/544 (2010), http://eprint.iacr.org/
  3. 3.
    Bellare, M., Kohno, T.: A theoretical treatment of related-key attacks: Rka-prps, rka-prfs, and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 491–506. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997)Google Scholar
  6. 6.
    Boyko, V.: On the security properties of OAEP as an all-or-nothing transform. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 503–518. Springer, Heidelberg (1999)Google Scholar
  7. 7.
    Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in the bucket: Public-key cryptography resilient to continual memory leakage. In: FOCS, pp. 335–359 (2010)Google Scholar
  8. 8.
    Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-resilient functions and all-or-nothing transforms. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 453–469. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Dodis, Y., Haralambiev, K., Lopez-Alt, A., Wichs, D.: Cryptography against continuous memory attacks. In: FOCS (2010)Google Scholar
  11. 11.
    Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC, pp. 621–630 (2009)Google Scholar
  12. 12.
    Dodis, Y., Sahai, A., Smith, A.: On perfect and adaptive security in exposure-resilient cryptography. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 301–324. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Dziembowski, S., Pietrzak, K.: Leakage-resilient cryptography. In: FOCS, pp. 293–302 (2008)Google Scholar
  14. 14.
    Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: ICS, pp. 434–452 (2010)Google Scholar
  15. 15.
    Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Faust, S., Rabin, T., Reyzin, L., Tromer, E., Vaikuntanathan, V.: Protecting circuits from leakage: the computationally-bounded and noisy cases. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 135–156. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic tamper-proof (ATP) security: Theoretical foundations for security against hardware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Goldwasser, S., Rothblum, G.: How to play mental solitaire under continuous side-channels: A completeness theorem using secure hardware (2010) (manuscript)Google Scholar
  20. 20.
    Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine. In: IEEE Symposium on Security and Privacy, pp. 154–165 (2003)Google Scholar
  21. 21.
    Alex Halderman, J., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: Cold boot attacks on encryption keys. In: USENIX Security Symposium, pp. 45–60 (2008)Google Scholar
  22. 22.
    Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: Keeping secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 41–58. Springer, Heidelberg (2010)Google Scholar
  25. 25.
    Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  27. 27.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)Google Scholar
  28. 28.
    Micali, S., Reyzin, L.: Physically observable cryptography (extented abstract). In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: The case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Pietrzak, K.: A leakage-resilient mode of operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  32. 32.
    Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): Measures and counter-measures for smart cards. In: Attali, S., Jensen, T. (eds.) E-smart 2001. LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  33. 33.
    Rao, J.R., Rohatgi, P.: Empowering side-channel attacks. Cryptology ePrint Archive, Report 2001/037 (2001), http://eprint.iacr.org/
  34. 34.
    Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  35. 35.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS, pp. 543–553 (1999)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Yael Tauman Kalai
    • 1
  • Bhavana Kanukurthi
    • 2
  • Amit Sahai
    • 3
  1. 1.Microsoft ResearchUSA
  2. 2.Boston UniversityUSA
  3. 3.University of California (UCLA)USA

Personalised recommendations