Skip to main content

Principle, Device, and Technology of Diode-Pumped Solid-State Laser

  • Chapter
  • First Online:
  • 2540 Accesses

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 164))

Abstract

Newman (J. Appl. Phys. 34:437, 1963) first presented the use of semiconductor sources to pump a solid-state laser. The technology of diode-pumped solid-state laser (DPL) is now mature after more than 40 years development. DPL has attracted much attention in broad applications, such as industry, medical and military fields, scientific research, etc., due to the advantages of high efficiency, compact configuration, long lifetime, high reliability, and good beam quality. In this chapter, we firstly present a historical overview of DPL for four stages. Then, the principle DPL and related thermal effect will be introduced. Based on the theoretical analysis, different kind of DPL devices have been developed. Finally, the THz-wave generation using DPL technology also will be presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Newman, J. Appl. Phys. 34, 437 (1963)

    Article  ADS  Google Scholar 

  2. R.J. Keyes, T.M. Quist, Appl. Phys. Lett. 4, 50 (1964)

    Article  ADS  Google Scholar 

  3. S.A. Ochs, J.I. Pankove, Proc. IEEE 52, 713 (1964)

    Article  Google Scholar 

  4. M. Ross, Proc. IEEE 56, 196 (1968)

    Article  Google Scholar 

  5. I.I. Kuratev, Phys. Ser. 48, 104 (1984)

    Google Scholar 

  6. Y. Kaneda et al., Opt. Lett. 17, 1003 (1991)

    Article  ADS  Google Scholar 

  7. S.C. Tidwell et al., Opt. Lett. 18, 116 (1993)

    Article  ADS  Google Scholar 

  8. J. Steffen et al., IEEE J. Quant. Electron. QE-8, 239 (1972)

    Google Scholar 

  9. V. Magni, Appl. Opt. 25, 107 (1986)

    Article  ADS  Google Scholar 

  10. H. Kogelnik, Bell Syst. Tech. J. 44, 455 (1965)

    Google Scholar 

  11. G. Herziger, H. Weber, Appl. Opt. 23, 1450 (1984)

    Article  ADS  Google Scholar 

  12. K.P. Driedger et al., IEEE J. Quant. Electron. 24, 665 (1988)

    Article  ADS  Google Scholar 

  13. V.R. Kushnir et al., Sov. J. Quant. Electron. 5, 713 (1975)

    Article  ADS  Google Scholar 

  14. H.P. Kortz et al., Appl. Opt. 20, 4124 (1981)

    Article  ADS  Google Scholar 

  15. W. Xie et al., Opt. Laser Technol. 32, 193 (2000)

    Article  ADS  Google Scholar 

  16. K. Walter, K.R. Dennis, IEEE J. Quant. Electron. 6, 557 (1970)

    Article  Google Scholar 

  17. J. Song et al., Appl. Opt. 36, 8051 (1997)

    Article  ADS  Google Scholar 

  18. K. Walter, Solid-State Laser Engineering (Springer, New York, 1976)

    Google Scholar 

  19. E. Wyss et al., IEEE J. Quant. Electron. 38, 1620 (2002)

    Article  ADS  Google Scholar 

  20. R. Weber et al., IEEE J. Quant. Electron. 36, 757 (2000)

    Article  ADS  Google Scholar 

  21. S. Konno et al., Appl. Phys. Lett. 70, 2650 (1997)

    Article  ADS  Google Scholar 

  22. R. Hua et al., Opt. Commun. 175, 189 (2000)

    Article  ADS  Google Scholar 

  23. E. Khazanov et al., J. Opt. Soc. Am. B 19, 667–671 (2002)

    Article  ADS  Google Scholar 

  24. B. Zhang et al., Proc. SPIE 4914, 455 (2002)

    Article  ADS  Google Scholar 

  25. M.E. Innocenzi et al., App. Phys. Lett. 56, 1831 (1990)

    Article  ADS  Google Scholar 

  26. A.G. Fox, T. Li, Proc. IEEE 51, 80 (1963)

    Article  Google Scholar 

  27. Y.F. Chen et al., IEEE J. Quant. Electron. 3, 29 (1997)

    Article  Google Scholar 

  28. J.K. Jabczynski, Opt. Commun. 182, 413 (2000)

    Article  ADS  Google Scholar 

  29. M. Frede et al., Opt. Express 12, 3581 (2004)

    Article  ADS  Google Scholar 

  30. Y.F. Chen, IEEE J. Quant. Electron. 35, 234 (1999)

    Article  ADS  Google Scholar 

  31. M.P. Macdonald et al., Opt. Commun. 178, 383 (2000)

    Article  ADS  Google Scholar 

  32. R. Weber et al., IEEE J. Quant. Electron. 34, 1046 (1998)

    Article  ADS  Google Scholar 

  33. S. Chenais et al., Opt. Mater. 22, 129 (2003)

    Article  ADS  Google Scholar 

  34. S. Chenais et al., App. Phys. B 79, 221 (2004)

    Article  Google Scholar 

  35. T.Y. Fan, R.L. Byer, IEEE J. Quant. Electron. 23, 605 (1987)

    Article  ADS  Google Scholar 

  36. R. Zhou et al., Opt. Express 13, 10115 (2005)

    Article  ADS  Google Scholar 

  37. M. Abraham et al., in Advanced Solid-State Lasers (OSA Technical Digest, Washington, USA, 2001), pp. 543

    Google Scholar 

  38. P. Zeller, P. Peuser, Opt. Lett. 25, 34–36 (2000)

    Article  ADS  Google Scholar 

  39. Y.D. Zavartsev et al., Quant. Electron. 33, 651 (2003)

    Article  ADS  Google Scholar 

  40. G.C. Bowkett et al., Opt. Lett. 19, 957 (1994)

    Article  ADS  Google Scholar 

  41. A. Dilieto et al., IEEE J. Quant. Electron. 39, 903 (2003)

    Article  ADS  Google Scholar 

  42. C. Du et al., Appl. Phys. B 80, 45 (2005)

    Article  ADS  Google Scholar 

  43. M. Frede et al., Opt. Laser Technol. 38, 183 (2006)

    Article  ADS  Google Scholar 

  44. D. Kracht et al., Opt. Express 13, 10140 (2005)

    Article  ADS  Google Scholar 

  45. T. Takase et al., in Conference on Lasers and Electro-Optics (2000), p. 198

    Google Scholar 

  46. A. Minassian, M.J. Damzen, in Europe Conference on Lasers and Electro-Optics ECLEO, Munich, Germany, 2003

    Google Scholar 

  47. Y. Inoue, S. Fujikawa, IEEE J. Quant. Electron. 36, 751 (2000)

    Article  ADS  Google Scholar 

  48. C.G. Bethea, IEEE J. Quant. Electron. 9, 254 (1973)

    Article  ADS  Google Scholar 

  49. V.E. Nadtocheev, O.E. Nanii, Sov. J. Quant. Electron. 19, 444 (1989)

    Article  ADS  Google Scholar 

  50. H.Y. Shen et al., Appl. Phys. Lett. 56, 1937 (1990)

    Article  ADS  Google Scholar 

  51. R.W. Farley, P.D. Dao, Appl. Opt. 34, 4269 (1995)

    Article  ADS  Google Scholar 

  52. Y.F. Chen, Appl. Phys. B 70, 475 (2000)

    Article  ADS  Google Scholar 

  53. P.X. Li et al., Opt. Commun. 235, 169 (2004)

    Article  ADS  Google Scholar 

  54. Y. Lu et al., Opt. Commun. 262, 241 (2006)

    Article  ADS  Google Scholar 

  55. R. Zhou et al., Chin. Opt. Lett. 3, 597 (2005)

    ADS  Google Scholar 

  56. T. Ogawa et al., Appl. Phys. B 81, 521 (2005)

    Article  ADS  Google Scholar 

  57. D.G. Xu et al., Opt. Commun. 245, 341 (2005)

    Article  ADS  Google Scholar 

  58. S. Konno et al., Opt. Lett. 25, 105 (2000)

    Article  ADS  Google Scholar 

  59. J. Liu et al., Opt. Quant. Electron. 35, 811 (2003)

    Article  ADS  Google Scholar 

  60. C.L. Du et al., Opt. Express 13, 2013 (2005)

    Article  ADS  Google Scholar 

  61. Y.H. Chen et al., Opt. Commun. 270, 58 (2007)

    Article  ADS  Google Scholar 

  62. Y.F. Chen, Y.P. Lan, Appl. Phys. B 74, 415 (2002)

    Article  ADS  Google Scholar 

  63. S.P. Ng et al., Opt. Commun. 229, 331 (2004)

    Article  ADS  Google Scholar 

  64. T. Kellner et al., Appl. Opt. 37, 7076 (1998)

    Article  ADS  Google Scholar 

  65. L. Zhang et al., Chin. Phys. Lett. 22, 1420 (2005)

    Article  ADS  Google Scholar 

  66. J. Dong et al., Opt. Lett. 25, 11013 (2000)

    Article  Google Scholar 

  67. J.H. Gu, F. Zhou, Opt. Eng. 38, 1785 (1999)

    Article  ADS  Google Scholar 

  68. R. Paschotta et al., Appl. Phys. B 70, S25 (2000)

    ADS  Google Scholar 

  69. G.J. Spuhler et al., Appl. Phys. B 71, 19 (2000)

    ADS  Google Scholar 

  70. D.N. Papadopoulos et al., Opt. Lett. 28, 1838 (2003)

    Article  ADS  Google Scholar 

  71. F. Brunner, G.J. Spühler, Opt. Lett. 25, 1119 (2000)

    Article  ADS  Google Scholar 

  72. F. Druon et al., Opt. Mater. 19, 73 (2002)

    Article  ADS  Google Scholar 

  73. A. Shirakawa et al., Opt. Express 11, 2911 (2003)

    Article  ADS  Google Scholar 

  74. G. Paunescu et al., Appl. Phys. B 79, 555 (2004)

    Article  ADS  Google Scholar 

  75. J.L. He et al., Opt. Lett. 29, 2803 (2004)

    Article  ADS  Google Scholar 

  76. L. Guo et al., Opt. Express 13, 4085 (2005)

    Article  ADS  Google Scholar 

  77. T. Taniuchi, H. Nakanishi, J. Appl. Phys. 95, 7588 (2004)

    Article  ADS  Google Scholar 

  78. R.L. Aggarwal, B. Lax, Nonlinear Infrared Generation (Springer, New York, 1977)

    Google Scholar 

  79. A. Borghesi, G. Guizzetti, Handbook of Optical Constants of Solids (Academic, New York 1985)

    Google Scholar 

  80. Y. Avetisyan et al., Appl. Phys. B 73, 511 (2001)

    ADS  Google Scholar 

  81. F. Zernike, P.R. Berman, Phys. Rev. Lett. 15, 999 (1965)

    Article  ADS  Google Scholar 

  82. R.L. Aggarwal et al., J. Appl. Phys. 45, 3972 (1974)

    Article  ADS  Google Scholar 

  83. T. Tanabe et al., J. Appl. Phys. 93, 4610 (2003)

    Article  ADS  Google Scholar 

  84. T. Tanabe et al., Appl. Phys. Lett. 83, 237 (2003)

    Article  ADS  Google Scholar 

  85. Y.J. Ding, W. Shi, J. IEEE Select. Topics Quant. Electron. 12, 352 (2006)

    Article  Google Scholar 

  86. Y.J. Ding, W. Shi, Laser Phys. 16, 562 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  87. K. Kawase et al., Opt. Lett. 24, 1065 (1999)

    Article  ADS  Google Scholar 

  88. T. Taniuchi et al., Electron. Lett. 36, 1414 (2000)

    Article  Google Scholar 

  89. T. Taniuchi et al., Electron. Lett. 40, 60 (2004)

    Article  Google Scholar 

  90. H. Adachi et al., Jpn. J. Appl. Phys. 43, L1121 (2004)

    Article  ADS  Google Scholar 

  91. P.E. Powers et al., Opt. Lett. 30, 640 (2005)

    Article  ADS  Google Scholar 

  92. Y. Sasaki et al., Appl. Phys. Lett. 81, 3323 (2002)

    Article  ADS  Google Scholar 

  93. Y. Sasaki et al., Opt. Express 12, 3066 (2004)

    Article  ADS  Google Scholar 

  94. Y. Sasaki et al., Opt. Lett. 30, 2927 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianquan Yao .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yao, J., Wang, Y. (2012). Principle, Device, and Technology of Diode-Pumped Solid-State Laser. In: Nonlinear Optics and Solid-State Lasers. Springer Series in Optical Sciences, vol 164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22789-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22789-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22788-2

  • Online ISBN: 978-3-642-22789-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics